Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Key oncology end points are not routinely encoded into electronic medical records (EMRs). We assessed whether natural language processing (NLP) can abstract treatment discontinuation rationale from unstructured EMR notes to estimate toxicity incidence and progression-free survival (PFS).
Methods: We constructed a retrospective cohort of 6,115 patients with early-stage and 701 patients with metastatic breast cancer initiating care at Memorial Sloan Kettering Cancer Center from 2008 to 2019. Each cohort was divided into training (70%), validation (15%), and test (15%) subsets. Human abstractors identified the clinical rationale associated with treatment discontinuation events. Concatenated EMR notes were used to train high-dimensional logistic regression and convolutional neural network models. Kaplan-Meier analyses were used to compare toxicity incidence and PFS estimated by our NLP models to estimates generated by manual labeling and time-to-treatment discontinuation (TTD).
Results: Our best high-dimensional logistic regression models identified toxicity events in early-stage patients with an area under the curve of the receiver-operator characteristic of 0.857 ± 0.014 (standard deviation) and progression events in metastatic patients with an area under the curve of 0.752 ± 0.027 (standard deviation). NLP-extracted toxicity incidence and PFS curves were not significantly different from manually extracted curves ( = .95 and = .67, respectively). By contrast, TTD overestimated toxicity in early-stage patients ( < .001) and underestimated PFS in metastatic patients ( < .001). Additionally, we tested an extrapolation approach in which 20% of the metastatic cohort were labeled manually, and NLP algorithms were used to abstract the remaining 80%. This extrapolated outcomes approach resolved PFS differences between receptor subtypes ( < .001 for hormone receptor+/human epidermal growth factor receptor 2- human epidermal growth factor receptor 2+ triple-negative) that could not be resolved with TTD.
Conclusion: NLP models are capable of abstracting treatment discontinuation rationale with minimal manual labeling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8462597 | PMC |
http://dx.doi.org/10.1200/CCI.20.00139 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!