To ensure reliability and facilitate the strain engineering of zinc oxide (ZnO) nanowires (NWs), it is significant to understand their flexibility thoroughly. In this study, single-crystalline ZnO NWs with rich axial pyramidal I () and prismatic stacking faults (SFs) are synthesized by a metal oxidation method. Bending properties of the as-synthesized ZnO NWs are investigated at the atomic scale using an high-resolution transmission electron microscopy (HRTEM) technique. It is revealed that the SF-rich structures can foster multiple inelastic deformation mechanisms near room temperature, including active axial SFs' migration, deformation twinning and detwinning process in the NWs with growth π SFs, and prevalent nucleation and slip of perfect dislocations with a continuous increased bending strain, leading to tremendous bending strains up to 20% of the NWs. Our results record ultralarge bending deformations and provide insights into the deformation mechanisms of single-crystalline ZnO NWs with rich axial SFs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.1c00883DOI Listing

Publication Analysis

Top Keywords

zno nws
12
zinc oxide
8
stacking faults
8
single-crystalline zno
8
nws rich
8
rich axial
8
deformation mechanisms
8
nws
6
exceptional deformability
4
deformability wurtzite
4

Similar Publications

In this work, the sensing ability and the underlying reaction pathways of HS adsorption on two nanomaterial systems, pristine zinc oxide (ZnO) nanowires (NWs) and gold functionalized zinc oxide nanowires (Au@ZnO NWs), were explored in a side-by-side comparison of optical and electrical gas sensing. The properties of optical sensing were analyzed by photoluminescence intensity-over-time measurements (-) of as-grown ZnO NW samples, and the electrical gas-sensing properties were analyzed by current-over-time measurements (-) of ZnO NW chemically sensitive field-effect transistor (ChemFET) structures with a gas-sensitive open gate. The ZnO NWs were grown by high-temperature chemical vapor deposition (CVD) and thereafter surface-functionalized with a thin Au nanoparticle layer by magnetron sputtering.

View Article and Find Full Text PDF

We are proposing a novel self-assembled monolayer (SAM) functionalized ZnO nanowires (NWs)-based conductometric sensor for the selective detection of hydrogen (H). The modulation of the surface electron density of ZnO NWs due to the presence of negatively charged terminal amine groups (-NH) of monolayers leads to an enhanced electron donation from H to ZnO NWs. This, in turn, increases the relative change in the conductance (response) of functionalized ZnO NWs as compared to bare ones.

View Article and Find Full Text PDF

The search for a synthesis method to create longer ZnO NWAs with high-quality vertical alignment, and the investigation of their electrical properties, have become increasingly important. In this study, a hydrothermal method for growing vertically aligned arrays of ZnO nanowires (NWs) using localized heating was utilized. To produce longer NWs, the temperature environment of the growth system was optimized with a novel reaction container that provided improved thermal insulation.

View Article and Find Full Text PDF

Site-Selective Nanowire Synthesis and Fabrication of Printed Memristor Arrays with Ultralow Switching Voltages on Flexible Substrate.

ACS Appl Mater Interfaces

November 2024

Bendable Electronics and Sustainable Technologies (BEST) Group, Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, United States.

Large area electronics (LAE) with the capability to sense and retain information are crucial for advances in applications such as wearables, digital healthcare, and robotics. The big data generated by these sensor-laden systems need to be scaled down or processed locally. In this regard, brain-inspired computing and in-memory computing have attracted considerable interest.

View Article and Find Full Text PDF

Zinc oxide nanowires (ZnO NWs) possess a unique one-dimensional (1D) morphology that offers a direct pathway for charge transport. In this article, we present the first application of the real-time time-dependent density functional tight-binding (real-time TD-DFTB) method for a model hybrid system consisting of a catechol molecule adsorbed on a ZnO nanowire. The rationalization of the photoinduced electron injection to the 1D nanostructure is attained through quantum dynamics simulations, stressing the role of charge transfer in the new optical transitions upon dye adsorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!