Stimulated Chiral Light-Matter Interactions in Biological Microlasers.

ACS Nano

School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore.

Published: May 2021

AI Article Synopsis

  • Chiral light-matter interactions are gaining attention in biophysics and quantum optics, with previous studies focusing on passive resonators and spontaneous emission.
  • The introduction of a biological chiral laser uses stimulated emission to enhance these interactions, utilizing chiral biomolecules like green fluorescent proteins in microcavities.
  • Experiments reveal that the lasing dissymmetry factor is linked to the absorption dissymmetry of the molecules, shedding light on the mechanisms of chiral interactions and their potential applications in biophysics and quantum biophotonics.

Article Abstract

Chiral light-matter interactions have emerged as a promising area in biophysics and quantum optics. Great progress in enhancing chiral light-matter interactions have been investigated through passive resonators or spontaneous emission. Nevertheless, the interaction between chiral biomolecules and stimulated emission remains unexplored. Here we introduce the concept of a biological chiral laser by amplifying chiral light-matter interactions in an active resonator through stimulated emission process. Green fluorescent proteins or chiral biomolecules encapsulated in Fabry-Perot microcavity served as the gain material while excited by either left-handed or right-handed circularly polarized pump laser. Owing to the nonlinear pump energy dependence of stimulated emission, significant enhancement of chiral light-matter interactions was demonstrated. Detailed experiments and theory revealed that a lasing dissymmetry factor is determined by molecular absorption dissymmetry factor at its excitation wavelength. Finally, chirality transfer was investigated under a stimulated emission process through resonance energy transfer. Our findings elucidate the mechanism of stimulated chiral light-matter interactions, providing better understanding of light-matter interaction in biophysics, chiral sensing, and quantum biophotonics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c01805DOI Listing

Publication Analysis

Top Keywords

chiral light-matter
24
light-matter interactions
24
stimulated emission
16
chiral
9
stimulated chiral
8
chiral biomolecules
8
emission process
8
dissymmetry factor
8
light-matter
7
stimulated
6

Similar Publications

Recent activity in the area of chiroptical phenomena has been focused on the connection between structural asymmetry, electron spin configuration and light/matter interactions in chiral semiconductors. In these systems, spin-splitting phenomena emerge due to inversion symmetry breaking and the presence of extended electronic states, yet the connection to chiroptical phenomena is lacking. Here, we develop an analytical effective mass model of chiral excitons, parameterized by density functional theory.

View Article and Find Full Text PDF

Chiral Light-Matter Interactions with Thermal Magnetoplasmons in Graphene Nanodisks.

Nano Lett

January 2025

Instituto de Química Física Blas Cabrera (IQF), CSIC, 28006 Madrid, Spain.

We investigate the emergence of self-hybridized thermal magnetoplasmons in doped graphene nanodisks at finite temperatures upon being subjected to an external magnetic field. Using a semianalytical approach, which fully describes the eigenmodes and polarizability of the graphene nanodisks, we show that the hybridization originates from the coupling of transitions between thermally populated Landau levels and localized magnetoplasmon resonances of the nanodisks. Owing to their origin, these modes combine the extraordinary magneto-optical response of graphene with the strong field enhancement of plasmons, making them an ideal tool for achieving strong chiral light-matter interactions, with the additional advantage of being tunable through carrier concentration, magnetic field, and temperature.

View Article and Find Full Text PDF

In this work, we theoretically explore whether a parity-violating/chiral light-matter interaction is required to capture all relevant aspects of chiral polaritonics or if a parity-conserving/achiral theory is sufficient (e.g., long-wavelength/dipole approximation).

View Article and Find Full Text PDF

Van Hove singularity (vHs), the singularity point of density of states (DOS) in crystalline solids, is a research hotspot in emerging phenomena such as light-matter interaction, superconducting, and quantum anomalous Hall effect. Although the significance of vHs in photothermoelectric (PTE) effect has been recognized, its integral role in electron excitation and thermoelectric effect is still unclear, particularly in the mid-infrared band that suffers from Pauli blockade in semimetals. Here, we unveil the Fermi-level-modulated PTE behavior in the vicinity of vHs in carbon nanotubes, employing ionic-liquid gating.

View Article and Find Full Text PDF

Electrical polarization switching of perovskite polariton laser.

Nanophotonics

June 2024

Faculty of Physics, Institute of Experimental Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland.

Optoelectronic and spinoptronic technologies benefit from flexible and tunable coherent light sources combining the best properties of nano- and material-engineering to achieve favorable properties such as chiral lasing and low threshold nonlinearities. In this work we demonstrate an electrically wavelength- and polarization-tunable room temperature polariton laser due to emerging photonic spin-orbit coupling. For this purpose, we design an optical cavity filled with both birefringent nematic liquid crystal and an inorganic perovskite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!