What we can learn from embryos to understand the mesenchymal-to-epithelial transition in tumor progression.

Biochem J

Laboratory of Developmental Biology, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina.

Published: May 2021

Epithelial plasticity involved the terminal and transitional stages that occur during epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET), both are essential at different stages of early embryonic development that have been co-opted by cancer cells to undergo tumor metastasis. These processes are regulated at multiple instances, whereas the post-transcriptional regulation of key genes mediated by microRNAs is gaining major attention as a common and conserved pathway. In this review, we focus on discussing the latest findings of the cellular and molecular basis of the less characterized process of MET during embryonic development, with special attention to the role of microRNAs. Although we take in consideration the necessity of being cautious when extrapolating the obtained evidence, we propose some commonalities between early embryonic development and cancer progression that can shed light into our current understanding of this complex event and might aid in the design of specific therapeutic approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BCJ20210083DOI Listing

Publication Analysis

Top Keywords

embryonic development
12
mesenchymal-to-epithelial transition
8
early embryonic
8
learn embryos
4
embryos understand
4
understand mesenchymal-to-epithelial
4
transition tumor
4
tumor progression
4
progression epithelial
4
epithelial plasticity
4

Similar Publications

We generated soybean mutants related to two ß-amyrin synthase genes using DNA-free site-directed mutagenesis system. Our results suggested that one of the genes is predominant in the soyasaponin biosynthesis. Soyasaponins, which are triterpenoid saponins contained in soybean [Glycine max (L.

View Article and Find Full Text PDF

Purpose: To describe a case of short common trunk of the occipital artery (OA) and ascending pharyngeal artery (APA) arising from the internal carotid artery (ICA).

Methods: A 36-year-old woman with a history of surgical resection of a right lateral ventricular meningioma and atheromatous plaque of the right ICA underwent cranial magnetic resonance (MR) imaging and MR angiography of the head and neck region with a 3-Tesla scanner.

Results: MR angiography of the neck region showed a small atheromatous plaque at the origin of the right ICA and an anomalous artery arising from the posteromedial aspect of the right ICA at the distal end of the carotid bulb.

View Article and Find Full Text PDF

The cellular electrical signals of living organisms were discovered more than a century ago and have been extensively investigated in the neuromuscular system. Neuronal depolarization and hyperpolarization are essential for our neuromuscular physiological and pathological functions. Bioelectricity is being recognized as an ancient, intrinsic, fundamental property of all living cells, and it is not limited to the neuromuscular system.

View Article and Find Full Text PDF

Di-2-(ethylhexyl)phthalate (DEHP) is a phthalate derivative used extensively in a wide range of materials, such as medical devices, toys, cosmetics, and personal care products. Many mechanisms, including epigenetics, may be involved in the effects of phthalates on brain development. In this study, Sprague-Dawley male rats were obtained 21-23 days after their birth (post-weaning) and were exposed to DEHP during the prepubertal period with low-dose DEHP (DEHP-L, 30 mg/kg/day) and high-dose DEHP (DEHP-H, 60 mg/kg/day, 37 days) until the end of adolescence (PND 60).

View Article and Find Full Text PDF

Objective: Bladder tissue models have been developed using smooth muscle cells (SMCs) on various scaffolds to mimic bladder morphology and physiology. This study investigates the effects of co-culturing fetal and adult SMCs on growth properties and protein profiles to understand cellular interactions and population kinetics.

Methods: Bladder tissue samples from 10 adult and 10 fetal New Zealand rabbits were divided into 5 groups: adult SMCs (A), fetal SMCs (F), 50%A+50%F (A+F), 75%A+25%F (3A+F), and 25%A+75%F (A+3F).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!