Alzheimer mutant speeds APP transport.

J Exp Med

Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY.

Published: June 2021

APPS198P segregates with rare familial forms of Alzheimer's disease and resides within exon 5, unlike 27 other mutations that reside in exons 16 or 17. In this issue, Zhang et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20210313) show that the brains of APPS198P transgenic mice accumulate excess levels of Aβ. In cultured cells, APPS198P undergoes accelerated ER folding, leading to early arrival in late vesicular compartments, thereby enhancing generation of Aβ.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8129791PMC
http://dx.doi.org/10.1084/jem.20210511DOI Listing

Publication Analysis

Top Keywords

alzheimer mutant
4
mutant speeds
4
speeds app
4
app transport
4
transport apps198p
4
apps198p segregates
4
segregates rare
4
rare familial
4
familial forms
4
forms alzheimer's
4

Similar Publications

Aβ40 Fibril Assembly on Human Cerebral Smooth Muscle Cells Impairs Cell Viability.

Biochemistry

January 2025

George and Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmacological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, United States.

Cerebral vascular deposition of the amyloid-β (Aβ) peptide, a condition known as cerebral amyloid angiopathy (CAA), is associated with intracerebral hemorrhaging and contributes to disease progression in Alzheimer's disease (AD) and vascular cognitive impairment and dementia (VCID). Familial mutations at positions 22 and 23 within the Aβ peptide lead to early onset and severe CAA pathology. Here, we evaluate the effects of fibrillar Aβ peptides on the viability of primary-cultured human cerebral smooth muscle (HCSM) cells, which are the major site of amyloid deposition in cerebral blood vessel walls.

View Article and Find Full Text PDF

Tau phosphorylation suppresses oxidative stress-induced mitophagy via FKBP8 receptor modulation.

PLoS One

January 2025

Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, New York, United States of America.

Article Synopsis
  • Neurodegenerative diseases like Alzheimer's are linked to problems with mitochondria, specifically mitophagy, which is the process of removing damaged mitochondria.
  • Research indicates that mutated tau proteins can inhibit this process, affecting cell health during oxidative stress.
  • In this study, it was found that certain tau mutations reduce levels of a key mitophagy receptor, FKBP8, which could help explain tau's role in mitochondrial dysfunction related to Alzheimer's and suggest FKBP8 as a target for future treatments.
View Article and Find Full Text PDF

APP lysine 612 lactylation ameliorates amyloid pathology and memory decline in Alzheimer's disease.

J Clin Invest

January 2025

Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.

Article Synopsis
  • Posttranslational modification (PTM) of the amyloid precursor protein (APP), particularly lactylation, is linked to the development of Alzheimer's disease (AD), but its specific role is still unclear.
  • Research showed reduced APP lactylation in AD patients and models, identifying lysine 612 as a key lactylation site, which affects APP processing and Aβ generation.
  • A lactyl-mimicking mutant enhanced APP trafficking and reduced cognitive decline by modifying APP interactions, suggesting that targeting APP lactylation may offer new therapeutic avenues for Alzheimer's disease.
View Article and Find Full Text PDF

Cathepsin D (Ctsd) has emerged as a promising therapeutic target for Alzheimer's disease (AD) due to its role in degrading intracellular amyloid beta (Aβ). Enhancing Ctsd activity could reduce Aβ42 accumulation and restore the Aβ42/40 ratio, offering a potential AD treatment strategy. This study explored Ctsd demethylation in AD mouse models using dCas9-Tet1-mediated epigenome editing.

View Article and Find Full Text PDF
Article Synopsis
  • GBM IDH wild type (GBM IDH wt) is linked to bad outcomes and intense inflammatory processes that help tumors grow and attract immune cells, making them more aggressive.
  • Researchers utilized RNA-seq and bioinformatics tools to explore how inflammatory molecules, specifically S100A proteins, play a role in glioma, finding a notable increase in S100A expression in GBM IDH wt compared to IDH mutants.
  • The study identified specific functions of S100A9, A11, and A13 in different regions of the glioma microenvironment, suggesting potential therapeutic strategies, such as using the RAGE inhibitor Azeliragon, currently in clinical trials, to counteract these inflammatory effects.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!