We report the optical and thermoelectric properties of the two-dimensional Dirac material T-silicene (TS) sheet and nanoribbons (NRs) by first-principles calculations. Both the optical and thermoelectric properties of TS can be modified by tailoring the sheet into nanoribbons of different widths and edge geometries. The optical response of the structures is highly anisotropic. A π interband transition occurs in the visible range of incident light with parallel polarization. The optical response for asymmetric arm-chair TS nanoribbons (ATSNRs) is larger than for symmetric ATSNRs. The absorptions of asymmetric ATSNR are redshifted due to a decrease in the bandgap with the width of the NRs. Plasma frequencies of the sheet and the NRs are identified from the imaginary part of the dielectric function and electron energy loss spectra curves. Thermoelectric properties like electrical conductivity, Seebeck coefficient, power factor, and electronic figure of merit are also studied. Compared with graphene, the TS sheet possesses a higher electrical conductivity and a better figure of merit. Among the NRs, asymmetric ATSNRs exhibit a better thermoelectric performance. All these intriguing features of TS may shed light on fabricating smart opto-electronic and thermoelectric devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp01466hDOI Listing

Publication Analysis

Top Keywords

thermoelectric properties
16
optical thermoelectric
12
sheet nanoribbons
8
optical response
8
electrical conductivity
8
figure merit
8
thermoelectric
6
optical
5
first-principles study
4
study optical
4

Similar Publications

Four quaternary Zintl phase thermoelectric (TE) materials belonging to the BaEuZnSb ( = 0.02(1), 0.04(1), 0.

View Article and Find Full Text PDF

Large Improvements in the Thermoelectric Properties of SnSe by Fast Cooling.

Materials (Basel)

January 2025

Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

As reported during the last five years, SnSe is one of the leading thermoelectric (TE) materials with a very low lattice thermal conductivity. However, its elements are not as heavy as those of classical thermoelectric materials like PbTe or BiTe. Its outstanding TE properties were revealed after repeated purification steps to minimize the amount of oxygen contamination, followed by spark plasma sintering.

View Article and Find Full Text PDF

ZnSb is widely recognized as a promising thermoelectric material in its bulk form, and a ZnSb bilayer was recently synthesized from the bulk. In this study, we designed a vertical van der Waals heterostructure consisting of a ZnSb bilayer and an h-BN monolayer to investigate its electronic, elastic, transport, and thermoelectric properties. Based on density functional theory, the results show that the formation of this heterostructure significantly enhances electron mobility and reduces the bandgap compared to the ZnSb bilayer, thereby increasing its power factor.

View Article and Find Full Text PDF

The thermoelectric properties of hybrid systems based on a single-level quantum dot coupled to a normal-metal/half-metallic lead and attached to a topological superconductor wire are investigated. The topological superconductor wire is modeled by a spinless p-wave superconductor which hosts both a Majorana bound state at its extremity and above gap quasiparticle excitations. The main interest of our investigation is to study the interplay of sub-gap and single-particle tunneling processes and their contributions to the thermoelectric response of the considered system.

View Article and Find Full Text PDF

N-type BiTeSe(BTS) is a state-of-the-art thermoelectric material owing to its excellent thermoelectric properties near room temperatures for commercial applications. However, its performance is restricted by its comparatively low figure of merit ZT. Here, it is shown that a 14% increase in power factor (PF) (at 300 K) can be reached through incorporation of inorganic GaAs nanoparticles due to enhanced thermopower originating from the energy-dependent carrier scattering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!