A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Superluminal and slow femtosecond laser pulses in hyperbolic metamaterials in epsilon-near-zero regime. | LitMetric

Flourish of optics of hyperbolic metamaterials (HMMs) is stimulated by their exotic optical properties. Here, we demonstrate resonant changes of the group retardation and superluminal-like propagation of femtosecond laser pulses in nanorod-based HMMs in the vicinity of epsilon-near-zero spectral point responsible for the transition between topologically distinct elliptic and hyperbolic light dispersions. Resonant dynamics of ultrashort pulses appears in a unique case when their spectral components are in both dispersion regimes simultaneously. Our findings suggest HMMs as a powerful platform for future ultrafast photonics and are pivotal for growing nonlinear optics of hyperbolic media.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.424491DOI Listing

Publication Analysis

Top Keywords

femtosecond laser
8
laser pulses
8
hyperbolic metamaterials
8
optics hyperbolic
8
superluminal slow
4
slow femtosecond
4
hyperbolic
4
pulses hyperbolic
4
metamaterials epsilon-near-zero
4
epsilon-near-zero regime
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!