Toward Complete Leading-Order Predictions for Neutrinoless Double β Decay.

Phys Rev Lett

Los Alamos National Laboratory, Theoretical Division, Los Alamos, New Mexico 87545, USA.

Published: April 2021

The amplitude for the neutrinoless double β (0νββ) decay of the two-neutron system nn→ppe^{-}e^{-} constitutes a key building block for nuclear-structure calculations of heavy nuclei employed in large-scale 0νββ searches. Assuming that the 0νββ process is mediated by a light-Majorana-neutrino exchange, a systematic analysis in chiral effective field theory shows that already at leading order a contact operator is required to ensure renormalizability. In this Letter, we develop a method to estimate the numerical value of its coefficient (in analogy to the Cottingham formula for electromagnetic contributions to hadron masses) and validate the result by reproducing the charge-independence-breaking contribution to the nucleon-nucleon scattering lengths. Our central result, while derived in dimensional regularization, is given in terms of the renormalized amplitude A_{ν}(|p|,|p^{'}|), matching to which will allow one to determine the contact-term contribution in regularization schemes employed in nuclear-structure calculations. Our results thus greatly reduce a crucial uncertainty in the interpretation of searches for 0νββ decay.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.126.172002DOI Listing

Publication Analysis

Top Keywords

neutrinoless double
8
0νββ decay
8
nuclear-structure calculations
8
complete leading-order
4
leading-order predictions
4
predictions neutrinoless
4
double decay
4
decay amplitude
4
amplitude neutrinoless
4
0νββ
4

Similar Publications

The Cryogenic Underground Observatory for Rare Events (CUORE) is a detector array comprised by 988 5  cm×5  cm×5  cm TeO_{2} crystals held below 20 mK, primarily searching for neutrinoless double-beta decay in ^{130}Te. Unprecedented in size among cryogenic calorimetric experiments, CUORE provides a promising setting for the study of exotic throughgoing particles. Using the first tonne year of CUORE's exposure, we perform a search for hypothesized fractionally charged particles (FCPs), which are well-motivated by various standard model extensions and would have suppressed interactions with matter.

View Article and Find Full Text PDF

Sensitivity Challenge of the Next-Generation Bolometric Double-Beta Decay Experiment.

Research (Wash D C)

December 2024

Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China.

Cryogenic crystal bolometer plays a crucial role in searching for neutrinoless double-beta (0νββ) decay, which is a rare process that could determine the Majorana nature of neutrinos. The flagship bolometer experiment-CUORE (Cryogenic Underground Observatory for Rare Events)-operating at the Gran Sasso underground laboratory [Laboratori Nazionali del Gran Sasso (LNGS)] as the world's first ton-scale bolometric detector has achieved great success and well demonstrated advantages of the bolometric technology for the 0νββ study. The proposed upgrade of CUORE-the CUPID project-aims to achieve higher sensitivity with orders of magnitude background reduction by utilizing scintillating crystals and dual readout technology to exclude most of the background events dominated by alpha particles.

View Article and Find Full Text PDF

The imaging of individual Ba ions in high pressure xenon gas is one possible way to attain background-free sensitivity to neutrinoless double beta decay and hence establish the Majorana nature of the neutrino. In this paper we demonstrate selective single Ba ion imaging inside a high-pressure xenon gas environment. Ba ions chelated with molecular chemosensors are resolved at the gas-solid interface using a diffraction-limited imaging system with scan area of 1 × 1 cm located inside 10 bar of xenon gas.

View Article and Find Full Text PDF

Supramolecular chemistry in solution and solid-gas interfaces: synthesis and photophysical properties of monocolor and bicolor fluorescent sensors for barium tagging in neutrinoless double beta decay.

RSC Appl Interfaces

January 2025

Departamento de Química Orgánica I and Centro de Innovación y Química Avanzada (ORFEO-CINQA), Facultad de Química/Kimika Fakultatea, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU) 20018 Donostia-San Sebastián Spain

Translation of photophysical properties of fluorescent sensors from solution to solid-gas environments functionalized surfaces constitutes a challenge in chemistry. In this work, we report on the chemical synthesis, barium capture ability and photophysical properties of two families of monocolor and bicolor fluorescent sensors. These sensors were prepared to capture barium cations that can be produced in neutrinoless double beta decay of Xe-136.

View Article and Find Full Text PDF

Current bounds on the neutrino Majorana mass are affected by significant uncertainties in the nuclear calculations for neutrinoless double-beta decay. A key issue for a data-driven improvement of the nuclear theory is the actual value of the axial coupling constant g_{A}, which can be investigated through forbidden β decays. We present the first measurement of the 4th-forbidden β decay of ^{115}In with a cryogenic calorimeter based on indium iodide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!