Single Cu(I)-Photosensitizer Enabling Combination of Energy-Transfer and Photoredox Catalysis for the Synthesis of Benzo[]fluorenols from 1,6-Enynes.

Org Lett

State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.

Published: June 2021

An efficient, mild, and atom-economical synthesis of benzo[]fluorenols from 1,6-enynes has been developed under photocatalytic conditions. A single P/N heteroleptic Cu(I)-photosensitizer might exhibit both energy-transfer and photoredox catalytic activities in the formation of benzo[]fluorenols.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.1c01427DOI Listing

Publication Analysis

Top Keywords

energy-transfer photoredox
8
synthesis benzo[]fluorenols
8
benzo[]fluorenols 16-enynes
8
single cui-photosensitizer
4
cui-photosensitizer enabling
4
enabling combination
4
combination energy-transfer
4
photoredox catalysis
4
catalysis synthesis
4
16-enynes efficient
4

Similar Publications

Atomically precise metal nanoclusters (NCs) have recently been recognized as an emerging sector of metal nanomaterials but suffer from light-induced poor stability, giving rise to the detrimental self-transformation into metal nanocrystals (NYs), losing the photosensitization effect and ultimately retarding their widespread applications in photoredox catalysis. Are metal NCs definitely superior to metal NYs in heterogeneous photocatalysis in terms of structural merits? To unlock this mystery, herein, we conceptually demonstrate how to rationally manipulate the instability of metal NCs to construct high-efficiency artificial photosystems and examine how the metal NYs self-transformed from metal NCs influence charge transfer in photoredox selective organic transformation. To our surprise, the results indicate that the Schottky-type electron-trapping ability of Au NYs surpasses the photosensitization effect of glutathione (GSH)-protected Au clusters [Au(GSH) NCs] in mediating charge separation and enhancing photoactivities towards selective photoreduction of aromatic nitro compounds to amino derivatives and photocatalytic oxidation of aromatic alcohols to aldehydes under visible light irradiation.

View Article and Find Full Text PDF

Quinolone antibiotics are a crucial class of synthetic antibacterial agents, widely utilized due to their broad spectrum of antibacterial activity. Due to the development of antimicrobial resistance, the potency of quinolone drugs decreased. Many conventional methods have been developed to elevate amination rate and to improve yield.

View Article and Find Full Text PDF

Boosting Hot Electron Generation in Energy Center Embedded Metal-Organic Frameworks for Photocatalysis.

Small

January 2025

Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.

The ligands in metal-organic framework (MOF) play as light absorption center and transfer photogenerated electrons to metal node through ligand-to-metal charge transfer (LMCT) during photocatalysis, and energy utilization efficiency is strongly restricted by the light inertness of ligands. Herein, a ligand updating strategy is proposed by inserting energy centers to MOFs to activate the inherent ligands, realizing boosting hot electron generation and photocatalytic activities via the cascaded proceeding of energy transfer and charge transfer. By taking PCN-777 (a zeotype mesoporous Zr-containing MOF) as an example, this study shows that the embedded energy center of 1-pyrenecarboxylic acid (PCA) can activate the inherent ligand of PCN-777 through triplet-triplet energy transfer, where triplet excitons would dissociate into photocarriers migrating to the Zr metal cluster via LMCT process.

View Article and Find Full Text PDF

Photoinduced Energy/Electron Transfer within Single-Chain Nanoparticles.

Angew Chem Int Ed Engl

January 2025

School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.

We demonstrate that single-chain nanoparticles (SCNPs) - compact covalently folded single polymer chains - can increase photocatalytic performance of an embedded catalytic center, compared to the comparable catalytic system in free solution. In particular, we demonstrate that the degree of compaction allows to finely tailor the catalytic activity, thus evidencing that molecular confinement is a key factor in controlling photocatalysis. Specifically, we decorate a linear parent polymer with both photoreactive chalcone moieties as well as Ru(bpy) catalytic centers.

View Article and Find Full Text PDF

Red-light absorbing photoredox catalysts offer potential advantages for large-scale reactions, expanding the range of usable substrates and facilitating bio-orthogonal applications. While many red-light absorbing/emitting fluorophores have been developed recently, functional red-light absorbing photoredox catalysts are scarce. Many photoredox catalysts rely on long-lived triplet excited states (triplets), which can efficiently engage in single electron transfer (SET) reactions with substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!