A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Theory of the electrostatic surface potential and intrinsic dipole moments at the mixed ionic electronic conductor (MIEC)-gas interface. | LitMetric

AI Article Synopsis

  • - The local activation overpotential reflects how the electrostatic potential deviates from equilibrium at an electrode/electrolyte boundary, which falls short in explaining the reaction kinetics for mixed ionic-electronic conducting (MIEC) solid-oxide cell electrodes where interactions occur at the electrode-gas interface.
  • - A model using the electrostatic potential at the MIEC-gas interface as a driving force has been developed, focusing on charge transfer dynamics at the ceria-gas interface influenced by the intrinsic dipole potential of the adsorbate.
  • - This model successfully explains the increased electrochemical activity of MIEC electrodes under higher steam and hydrogen pressures, and it was validated against existing operando XPS data, accurately predicting the shift in work

Article Abstract

The local activation overpotential describes the electrostatic potential shift away from equilibrium at an electrode/electrolyte interface. This electrostatic potential is not entirely satisfactory for describing the reaction kinetics of a mixed ionic-electronic conducting (MIEC) solid-oxide cell (SOC) electrode where charge transfer occurs at the electrode-gas interface. Using the theory of the electrostatic potential at the MIEC-gas interface as an electrochemical driving force, charge transfer at the ceria-gas interface has been modelled based on the intrinsic dipole potential of the adsorbate. This model gives a physically meaningful reason for the enhancement in electrochemical activity of a MIEC electrode as the steam and hydrogen pressure is increased in both fuel cell and electrolysis modes. This model was validated against operando XPS data from previous literature to accurately predict the outer work function shift of thin film Sm0.2Ce0.8O1.9 in a H2/H2O atmosphere as a function of overpotential.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp01639cDOI Listing

Publication Analysis

Top Keywords

electrostatic potential
12
theory electrostatic
8
intrinsic dipole
8
miec-gas interface
8
charge transfer
8
potential
5
interface
5
electrostatic surface
4
surface potential
4
potential intrinsic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: