Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Perovskite microcavities have excellent photophysical properties for integrated optoelectronic devices, such as nanolasers. Imaging and controlling the photonic modes within the cavity are fundamentally important to understand and develop applications. Here, photoemission electron microscopy (PEEM) is used to image the photonic modes within optical microcavities with a nanometer-scale spatial resolution. From a CsPbBr microcavity, hybrid mode patterns are observed. Spatial frequency spectrum analysis on the patterns uncovers the characteristic cavity modes, which are modeled with transverse magnetic (TM) and transverse electric (TE) waves, and assigned to exciton-polariton modes. Based on this understanding, the light focus in a designed microcavity is imaged in real space and controlled by the light field polarization. The study confirms that the cavity modes in perovskites can be effectively observed by the PEEM technique under resonant excitation, which, in turn, promotes the design of optoelectronic devices based on perovskite microcavities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202100775 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!