A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Imaging and Controlling Photonic Modes in Perovskite Microcavities. | LitMetric

Imaging and Controlling Photonic Modes in Perovskite Microcavities.

Adv Mater

State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China.

Published: June 2021

Perovskite microcavities have excellent photophysical properties for integrated optoelectronic devices, such as nanolasers. Imaging and controlling the photonic modes within the cavity are fundamentally important to understand and develop applications. Here, photoemission electron microscopy (PEEM) is used to image the photonic modes within optical microcavities with a nanometer-scale spatial resolution. From a CsPbBr microcavity, hybrid mode patterns are observed. Spatial frequency spectrum analysis on the patterns uncovers the characteristic cavity modes, which are modeled with transverse magnetic (TM) and transverse electric (TE) waves, and assigned to exciton-polariton modes. Based on this understanding, the light focus in a designed microcavity is imaged in real space and controlled by the light field polarization. The study confirms that the cavity modes in perovskites can be effectively observed by the PEEM technique under resonant excitation, which, in turn, promotes the design of optoelectronic devices based on perovskite microcavities.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202100775DOI Listing

Publication Analysis

Top Keywords

photonic modes
12
perovskite microcavities
12
imaging controlling
8
controlling photonic
8
optoelectronic devices
8
cavity modes
8
modes
6
modes perovskite
4
microcavities
4
microcavities perovskite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!