High industrialization and improved medical facilities are deteriorating aquatic bodies through untreated effluents. This study is aimed to design and characterize the bentonite, Duranta erecta, and their hybrid-alginate beads for the removal of cetyltrimethylammonium bromide (CTAB) from its aqueous solution. D. erecta's seed powder was treated by using a sonochemical method and embedded into alginate beads. All designed beads were characterized by using physicochemical methods, Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) technique. Hybrid beads were found to form an appropriate hydrogel structure with maximum surface area per unit gram (544 cm g), 0.42 mg dry weight, and 2.70 mm diameter. Kinetics and intraparticle diffusion models were fitted where involvement of both chemisorption and intraparticle diffusion was observed during the initial 30 and post-30-min phase, respectively. Thermodynamic studies corroborated the spontaneity of the CTAB adsorption process. Bentonite alginate beads showed the highest adsorption capacity of 97.06 mg g in 100 mg L CTAB solution at optimized conditions, while hybrid-alginate beads showed excellent efficiency with a wide range of physicochemical conditions frame. Conclusively, designed beads can be used to remove the surfactant, i.e., CTAB, from industrial waste effluents for the betterment of water reservoirs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-14306-6DOI Listing

Publication Analysis

Top Keywords

alginate beads
12
beads
8
hybrid-alginate beads
8
designed beads
8
intraparticle diffusion
8
synthesis low-cost
4
low-cost bentonite/duranta
4
bentonite/duranta erecta's
4
erecta's fruit
4
fruit powder
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!