Protocatechualdehyde restores endothelial dysfunction in streptozotocin-induced diabetic rats.

Ann Transl Med

Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China.

Published: April 2021

Background: The present study was conducted with the aim of clarifying the effects of protocatechualdehyde (PCA) on the endothelial function in streptozotocin (STZ)-induced diabetic rats.

Methods: Sprague Dawley (SD) rats were intraperitoneally injected with STZ (single dose of 60 mg/kg). Diabetic model rats were given PCA (25 mg/kg/day) via gavage feeding for 6 weeks. Vascular function was studied; superoxide anion and nitrotyrosine levels were assessed; and nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase as well as total superoxide dismutase (SOD) activity were detected. Protein expression of phosphorylated endothelial nitric oxide synthase (P-eNOS), total endothelial nitric oxide synthase (T-eNOS), p22, p47 and Cu/Zn-SOD were measured by Western blot analysis.

Results: PCA treatment significantly ameliorated the impairment of acetylcholine- evoked endothelium-dependent relaxation, with no obvious effects observed on the blood glucose or body weight in the STZ-induced diabetic rats. Expression levels of aortic P-eNOS/T-eNOS and endothelial nitric oxide synthase (eNOS) activity were decreased in STZ-induced diabetic rats while they remained unchanged in PCA-treated rats. However, PCA treatment improved oxidative inactivation of nitric oxide (NO) and decreased the levels of superoxide anion and nitrotyrosine in the aorta of STZ-induced diabetic rats; these were achieved by reducing the level of nitrotyrosine and down-regulating p47 and p22 expression, as well as up-regulating Cu/Zn-SOD protein expression. Consistently, the effects observed were associated with a decrease in NADPH oxidase activity and an increase in total SOD activity.

Conclusions: Our results indicate that the administration of PCA may be protective against oxidative stress and may restore endothelial function by improving vascular NO oxidative inactivation in diabetic condition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8106075PMC
http://dx.doi.org/10.21037/atm-21-1431DOI Listing

Publication Analysis

Top Keywords

diabetic rats
16
stz-induced diabetic
16
nitric oxide
16
endothelial nitric
12
oxide synthase
12
endothelial function
8
rats pca
8
superoxide anion
8
anion nitrotyrosine
8
nadph oxidase
8

Similar Publications

Matching model with mechanism: Appropriate rodent models for studying various aspects of diabetes pathophysiology.

Methods Cell Biol

January 2025

School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom. Electronic address:

Many rodent models are available for preclinical diabetes research making it a challenge for researchers to choose the most appropriate one for their experimental question. To aid in this, models have classically been categorized according to which type of diabetes they represent, and further into whether the model is induced, spontaneous or the result of genetic manipulation. This fails to capture the complexity of pathogenesis seen in diabetes in humans.

View Article and Find Full Text PDF

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

Background: It seems that some substances of plant origin may exert health-promoting activities in diabetes and its complications, including those concerning bones. Chrysin (5,7-dihydroxyflavone), present in honey, some plants, and food of plant origin, has been reported to exert, among others, antioxidative, anti-inflammatory and antidiabetic effects. The aim of this study was to investigate the effects of chrysin on the skeletal system of rats with experimental type 1 diabetes (T1D).

View Article and Find Full Text PDF

Potential Effect of Cinnamaldehyde on Insulin Resistance Is Mediated by Glucose and Lipid Homeostasis.

Nutrients

January 2025

Instituto de Bioeletricidade Celular (IBIOCEL): Ciência & Saúde, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Sala G 301, Florianópolis 88038-000, SC, Brazil.

Diabetes mellitus is a metabolic syndrome that has grown globally to become a significant public health challenge. Hypothesizing that the plasma membrane protein, transient receptor potential ankyrin-1, is a pivotal target in insulin resistance, we investigated the mechanism of action of cinnamaldehyde (CIN), an electrophilic TRPA1 agonist, in skeletal muscle, a primary insulin target. Specifically, we evaluated the effect of CIN on insulin resistance, hepatic glycogen accumulation and muscle and adipose tissue glucose uptake.

View Article and Find Full Text PDF

The Effect of the 14:10-Hour Time-Restricted Feeding (TRF) Regimen on Selected Markers of Glucose Homeostasis in Diet-Induced Prediabetic Male Sprague Dawley Rats.

Nutrients

January 2025

Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.

Background: Prediabetes is a condition that often precedes the onset of type 2 diabetes mellitus (T2DM). Literature evidence indicates that prediabetes is reversible, making it an important therapeutic target for preventing the progression to T2DM. Several studies have investigated intermittent fasting as a possible method to manage or treat prediabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!