Background: Major histocompatibility complex class I (MHC-I) plays an important role in cell immune response, and stable interaction between polypeptides and MHC-I ensures efficient presentation of polypeptide-MHC-I (pMHC-I) molecular complexes to T cells. The aim of this study was to explore ways to improve the affinity and stability of the p-Human Leukocyte Antigen (HLA)-A*2402 complex.

Methods: The peptide sequences of the restricted antigen peptides for HLA-A*2402 and the results of the competitive binding test were retrieved from the literature. The affinity values were predicted using NetMHCpan v4.1 server, and the stability values were predicted using the NetMHCstab v1.0 server. Auto Vina was used to dock peptides to HLA-A*2402 protein in a flexible docking manner, while Flexpepdock was employed to optimize the docking morphology. Maestro was used to analyze the intermolecular forces and the binding affinity of the complex, while MM-GBSA was used to calculate the binding free energy values.

Results: The intermolecular interactions that maintained the affinity and stability of peptide-HLA-A*2402 complex relied mainly on HB, followed by pi stack. The binding affinity values of molecular docking were associated with the predicted values of affinity and stability, the binding affinity and the binding free energy, as well as the intermolecular force pi-stack. The pi stack had a significant negative correlation with binding affinity and binding free energy. The replacement of the residues of the polypeptides that did not form pi-stack interactions with HLA-A*2402 improved the affinity and/or stability compared to before replacement.

Conclusions: The generation and increase in the number of pi-stacks between peptides and HLA-A*2402 molecules may help improve the affinity and stability of p-HLA-A*2402 complexes. The prediction of intermolecular forces and binding affinity of peptide-HLA by means of molecular docking is a supplement to the current commonly used prediction databases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8106073PMC
http://dx.doi.org/10.21037/atm-21-630DOI Listing

Publication Analysis

Top Keywords

affinity stability
20
binding affinity
20
molecular docking
12
peptides hla-a*2402
12
binding free
12
free energy
12
affinity
11
binding
9
restricted antigen
8
antigen peptides
8

Similar Publications

Functional gold nanoparticles have emerged as a cornerstone in targeted drug delivery, imaging, and biosensing. Their stability, distribution, and overall performance in biological systems are largely determined by their interactions with molecules in biological fluids as well as the biomolecular layers they acquire in complex environments. However, real-time tracking of how biomolecules attach to colloidal nanoparticles, a critical aspect for optimizing nanoparticle function, has proven to be experimentally challenging.

View Article and Find Full Text PDF

Site-selective photo-crosslinking for the characterisation of transient ubiquitin-like protein-protein interactions.

PLoS One

January 2025

Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.

Non-covalent protein-protein interactions are one of the most fundamental building blocks in cellular signalling pathways. Despite this, they have been historically hard to identify using conventional methods due to their often weak and transient nature. Using genetic code expansion and incorporation of commercially available unnatural amino acids, we have developed a highly accessible method whereby interactions between biotinylated ubiquitin-like protein (UBL) probes and their binding partners can be stabilised using ultraviolet (UV) light-induced crosslinks.

View Article and Find Full Text PDF

A number of studies demonstrate the therapeutic effectiveness of Radix Bupleuri (RB) and Hedysarum Multijugum Maxim (HMM) in treating liver fibrosis, but the exact molecular mechanisms remain unclear. This study aims to explore the mechanism of RB-HMM drug pairs in treating liver fibrosis by using network pharmacology, bioinformatics, molecular docking, molecular dynamics simulation technology and in vitro experiments. Totally, 155 intersection targets between RB-HMM and liver fibrosis were identified.

View Article and Find Full Text PDF

The maturation of the RNA cap involving guanosine N-7 methylation, catalyzed by the HsRNMT (RNA guanine-7 methyltransferase)-RAM (RNA guanine-N7 methyltransferase activating subunit) complex, is currently under investigation as a novel strategy to combat PIK3CA mutant breast cancer. However, the development of effective drugs is hindered by a limited understanding of the enzyme's mechanism and a lack of small molecule inhibitors. Following the elucidation of the HsRNMT-RAM molecular mechanism, we report the biophysical characterization of two small molecule hits.

View Article and Find Full Text PDF

Maternal Embryonic Leucine Zipper Kinase (MELK), a pivotal signaling protein, plays a crucial role in various physiological processes such as cell growth, survival, and differentiation. There is currently a growing interest in MELK as a promising therapeutic target for multiple cancers, including triple-negative breast cancer (TNBC). Exploring MELK as a target offers a prospective strategy to impede cancer progression and enhance the efficacy of conventional anticancer therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!