CRISPR-Cas9 is a powerful tool for target genome editing in living cells. Significant advances have been made to understand how this system cleaves target DNA. HNH is a nuclease domain, which shares structural similarity with the HNH endonuclease characterzied by a beta-beta-alpha-metal fold. Therefore, based on one- and two-metal-ion mechanisms, homology modeling and molecular dynamics (MD) simulation are suitable tools for building an atomic model of Cas9 in the DNA cleavage state. Here, by modeling and MD, we presented an atomic model of SpCas9-sgRNA-DNA complex with the cleavage state. This model shows that the HNH and RuvC conformations resemble their DNA cleavage state where the active-sites in the complex coordinate with DNA, Mg ions, and water. Among them, residues D10, E762, H983, and D986 locate at the first shell of the RuvC active-site and interact with the ions directly, residues H982 or/and H985 are general (Lewis) bases, and the coordinated water is located at the positions for nucleophilic attack of the scissile phosphate. Meanwhile, this catalytic model led us to engineer a new SpCas9 variant (SpCas9-H982A + H983D) with reduced off-target effects. Thus, our study provided new mechanistic insights into the CRISPR-Cas9 system in the DNA cleavage state and offered useful guidance for engineering new CRISPR-Cas9 editing systems with improved specificity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8112549 | PMC |
http://dx.doi.org/10.3389/fmolb.2021.653262 | DOI Listing |
Front Immunol
January 2025
Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Chimeric antigen receptor T-cell (CAR-T) therapies have shown promise in glioblastoma clinical studies, but responses remain inconsistent due to heterogeneous tumor antigen expression and immune evasion post-treatment. NKG2D CAR-T cells have demonstrated a favorable safety profile in patients with hematologic tumors, and showed robust antitumor efficacy in various xenograft models, including glioblastoma. However, malignant glioma cells evade immunological surveillance by reducing NKG2D ligands expression or cleavage.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, PR China.
The pivotal role of electrolytes such as NaSO and NaCl in electrochemical treatment of dyeing wastewater was investigated by comparing recalcitrant Reactive Red X-3B (RRX-3B) degradation rates, active species formation and intermediates generation in a double-chamber cell. It was found that similar reactive oxygen species (ROS) formed in the anodic chamber are OH and O, in the cathodic chamber is O with different electrolytes, while this is not the case for ROS contribution, RRX-3B degradation kinetic and intermediates. NaCl favored the generation of O, faster decolorization (-N=N- cleavage), and organic intermediates degradation in the anodic chamber.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States.
Natural enzymes are powerful catalysts, reducing the apparent activation energy for reactions and enabling chemistry to proceed as much as 10 times faster than the corresponding solution reaction. It has been suggested for some time that, in some cases, quantum tunneling can contribute to this rate enhancement by offering pathways through a barrier inaccessible to activated events. A central question of interest to both physical chemists and biochemists is the extent to which evolution introduces mechanisms below the barrier, or tunneling mechanisms.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts, 02155, United States.
This paper describes a series of 12 9,10-dimethoxyanthracene derivatives functionalized with a range of electronically diverse ethynyl substituents at the 2 and 6 positions, aimed at tuning their optoelectronic properties and reactivity with singlet oxygen (O). Optical spectroscopy, cyclic voltammetry, and density functional theory calculations reveal that the ethynyl groups decrease the HOMO-LUMO gaps in these acenes. Notably, bis(dimethylanilineethynyl) substituents increase the wavelength of absorbance onset by over 60 nm compared to 9,10-dimethoxyanthracene (DMA).
View Article and Find Full Text PDFAcc Chem Res
January 2025
The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.
ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!