Glutaric aciduria type II (GA II) also known as multiple acyl-CoA dehydrogenase deficiency is an inborn metabolic disorder belonging to the family of organic acidurias. It is a disorder that interferes with the body's ability to break down proteins and fats to produce energy. Tandem mass spectrometry (TMS) acts as a screening tool, while the diagnosis of GA-II with ketosis is confirmed by a combination of tests like organic acids, quantitative random urine, and a full urine panel. Early diagnosis, compliance to specialized diet, affordability, and regular follow-ups are required to tackle this potentially life-threatening condition. Herein, we report a case of glutaric aciduria type-II with ketosis in a 4.5 months old male infant who was managed with a low-protein diet, which was free of tryptophan, lysine, and other specific dietary supplements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8110299 | PMC |
http://dx.doi.org/10.7759/cureus.14407 | DOI Listing |
Neurol India
November 2024
Department of Neurology, Ramaiah Medical College, Bengaluru, Karnataka, India.
Cell Rep
December 2024
Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada. Electronic address:
Lysine metabolism converges at α-aminoadipic semialdehyde dehydrogenase (ALDH7A1). Rare loss-of-function mutations in ALDH7A1 cause a toxic accumulation of lysine catabolites, including piperideine-6-carboxylate (P6C), that are thought to cause fatal seizures in children unless strictly managed with dietary lysine reduction. In this study, we perform metabolomics and expression analysis of tissues from Aldh7a1-deficient mice, which reveal tissue-specific differences in lysine metabolism and other metabolic pathways.
View Article and Find Full Text PDFEur J Pediatr
December 2024
Department of Pediatric Metabolism and Nutrition, Medical Faculty, Ege University, Izmir, 35040, Turkey.
Unlabelled: Glutaric aciduria type 1 (GA1) is a rare metabolic disorder characterized by a deficiency in the enzyme glutaryl-CoA dehydrogenase. This study aims to present the clinical, biochemical, genetic, and neuroimaging findings of GA1 patients, emphasizing the importance of early detection and the potential benefits of incorporating GA1 into NBS programs. The demographic, clinical, and laboratory findings of GA1 patients were reviewed retrospectively.
View Article and Find Full Text PDFJ Hum Genet
November 2024
Laboratory of Basic Medicine, Fujian Provincial Key Laboratory of Transplant Biology, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, Fujian, China.
In this study, we aimed to apply preimplantation genetic testing for monogenic disorders (PGT-M) based on mutated allele revealed by sequencing with aneuploidy and linkage analyses (MARSALA) to block the transmission of inborn errors of metabolism (IEMs). After the disease-causing variants were identified through genetic testing, four carrier couples having children affected with IEMs, including methylmalonic aciduria, glutaric acidemia type 1, beta-ketothiolase deficiency, and ornithine transcarbamylase deficiency, sought PGT-M. A series of PGT procedures involving intracytoplasmic sperm injection, blastocyst culture, biopsy of trophectoderm cells, and next-generation sequencing (NGS)-based MARSALA, was performed to provide comprehensive chromosome screening and variant gene analysis.
View Article and Find Full Text PDFNeurochem Int
December 2024
PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil; Departamento de Medicina Interna, Faculdade de Medicina, UFRGS, Porto Alegre, Brazil; Serviço de Genética Médica, HCPA, Porto Alegre, Brazil. Electronic address:
Patients with glutaric acidemia type I (GA I) manifest motor and intellectual disabilities whose pathogenesis has been so far poorly explored. Therefore, we evaluated neuromotor and cognitive abilities, as well as histopathological and immunohistochemical features in the cerebral cortex and striatum of glutaryl-CoA dehydrogenase (GCDH) deficient knockout mice (Gcdh), a well-recognized model of GA I. The effects of a single intracerebroventricular glutaric acid (GA) injection in one-day-old pups on the same neurobehavioral and histopathological/immunohistochemical endpoints were also investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!