SH-1028 is an irreversible third-generation EGFR TKI. Both SH-1028 and osimertinib have a pyrimidine structure (a typical mutant-selective EGFR TKI structure). Compared with osimertinib, SH-1028 is modified on the indole ring, thus resulting in a more stable 6,7,8,9-tetrahydro-pyrrolo [1, 2-a] indol structure. In this study, we explored the anti-tumor effect of SH-1028 and , the inhibition of cell signal, such as EGFR and ERK phosphorylation, and verified the relationship between the pharmacokinetics and pharmacodynamic responses. Firstly, SH-1028 selectively inhibited EGFR sensitive and resistant mutations, with up to 198-fold more effective compared with wild-type EGFR cells. Then, in mouse xenograft models, oral administration of SH-1028 at a daily dose of 5 mg/kg significantly inhibited proliferation of tumor cells with EGFR sensitive mutation (exon 19 del) and resistant mutation (T790 M) for consecutive 14 days, with no TKI-induced weight loss. Moreover, SH-1028 exhibited good bioavailability, and was distributed extensively from the plasma to the tissues. The main metabolite of SH-1028, Imp3, was tested and showed no wild-type EGFR inhibition or off-target effects. In conclusion, SH-1028 is a new third-generation EGFR inhibitor that exhibits potent activity against EGFR sensitive and resistant (T790 M) mutations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8111447PMC
http://dx.doi.org/10.3389/fphar.2021.665253DOI Listing

Publication Analysis

Top Keywords

third-generation egfr
12
egfr tki
12
egfr sensitive
12
sh-1028
10
egfr
10
sh-1028 irreversible
8
irreversible third-generation
8
sensitive resistant
8
wild-type egfr
8
tki overcomes
4

Similar Publications

Uncommon atypical mutations account for 10-15% of all epidermal growth factor receptor (EGFR) activating mutations in nonsmall-cell lung cancer (NSCLC). Tumors harboring rare EGFR mutations show highly heterogeneous responses to EGFR tyrosine kinase inhibitors (TKIs). There is insufficient clinical evidence for uncommon types of EGFR mutations, especially those with compound EGFR mutations.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, often linked to overexpression or abnormal activation of the epidermal growth factor receptor (EGFR). The issue of developing resistance to third-generation EGFR kinase inhibitors, such as osimertinib, underscores the urgent need for new therapies to overcome this resistance. Our findings revealed that compound A8 exhibits 88.

View Article and Find Full Text PDF

Osimertinib as a neoadjuvant therapy in resectable EGFR-mutant non-small cell lung cancer: a real-world, multicenter retrospective study.

Transl Lung Cancer Res

December 2024

Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China (UESTC), Chengdu, China.

Background: Osimertinib, a third-generation tyrosine kinase inhibitor (TKI), has been authorized for use in patients with epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC). This study aimed to evaluate the effectiveness and safety of neoadjuvant osimertinib in individuals with resectable locally advanced NSCLC harboring EGFR mutation.

Methods: Ten centers located in mainland China took part in a single-arm, real-world, multicenter retrospective study (registration number: ChiCTR2100049954).

View Article and Find Full Text PDF

Background: The combination therapy of the B-Raf proto-oncogene (BRAF) inhibitor dabrafenib and the mitogen-activated protein kinase kinase (MEK) inhibitor Trametinib has shown favorable outcomes in patients initially identified with BRAF mutations. However, there are currently no large-scale study data focusing on the use of a triple therapy regimen of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) plus dabrafenib and trametinib in patients with newly concomitant BRAF mutations after acquiring resistance to EGFR-TKIs. Our study aimed to explore the efficacy and safety of the triple therapy regimen through a multi-center real-world experience.

View Article and Find Full Text PDF

After L858R and ex19del epidermal growth factor receptor (EGFR) mutations, ex20ins mutations are the third most common class of driver-mutations in non-small cell lung cancer (NSCLC). Unfortunately, first-, second-, and third-generation EGFR tyrosine kinase inhibitors (TKIs) are generally ineffective for ex20ins patients due to insufficient mutant activity and selectivity over wild-type EGFR, leading to dose-limiting toxicities. While significant advances in recent years have been made toward identifying potent EGFR ex20ins mutant inhibitors, mutant vs wild-type EGFR selectivity remains a significant challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!