Type 1 diabetes (T1D) is an auto-immune disease that destructs insulin-producing pancreatic beta-cells within the islets of Langerhans. The incidence of T1D has tripled over the last decades, while the pathophysiology of the disease is still largely unknown. Currently, there is no cure for T1D. The only treatment option consists of blood-glucose regulation with insulin injections and intensive monitoring of blood glucose levels. In recent years, perturbations in the ecosystem of the gut microbiome also referred to as dysbiosis, have gained interest as a possible contributing factor in the development of T1D. Changes in the microbiome seem to occur before the onset of T1D associated auto-antibodies. Furthermore, rodent studies demonstrate that administering antibiotics at a young age may accelerate the onset of T1D. This review provides an overview of the research performed on the epidemiology, pathophysiology, interventions, and possible treatment options in the field of the gut microbiome and T1D.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.beem.2021.101544 | DOI Listing |
Nat Commun
January 2025
Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
Gut microbiota disruptions after allogeneic hematopoietic cell transplantation (alloHCT) are associated with increased risk of acute graft-versus-host disease (aGVHD). We designed a randomized, double-blind placebo-controlled trial to test whether healthy-donor fecal microbiota transplantation (FMT) early after alloHCT reduces the incidence of severe aGVHD. Here, we report the results from the single-arm run-in phase which identified the best of 3 stool donors for the randomized phase.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic Barcelona, Barcelona, Spain; Departament de Biomedicina, Universitat de Barcelona, Barcelona, Spain. Electronic address:
Mice models serve as a valuable tool to study microbiome-immune system interactions. While the use of germ-free mice may represent the gold-standard method, antibiotic-based microbiome depletion provides a more cost-efficient and feasible system. The protocol here in presented provides a mild antimicrobial regime to deplete basal microbiota in 8-week-old C57BL/6 mice, aiming to ensure reproducibility in microbiota studies.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
School of Medical and Life Sciences, Sunway University, Petaling Jaya, Selangor 47500, Malaysia. Electronic address:
As the number of infections and deaths attributable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to rise, it is now becoming apparent that the health impacts of the Coronavirus disease (COVID-19) may not be limited to infection and the subsequent resolution of symptoms. Reports have shown that patients with SARS-CoV-2 infection may experience multiple symptoms across different organ systems that are associated with adverse health outcomes and develop new cardiac, renal, respiratory, musculoskeletal, and nervous conditions, a condition known as Long COVID or the post-acute sequelae of COVID-19 (PASC). This review provides insights into distinct subphenotypes of Long COVID and identifies microbiota dysbiosis as a common theme and crucial target for future therapies.
View Article and Find Full Text PDFComput Biol Med
January 2025
National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India. Electronic address:
The biotransformation of drugs by enzymes from the human microbiome can produce active or inactive products, impacting the bioactivity and function of these drugs inside the human host. However, understanding the biotransformation reactions of drug molecules catalyzed by bacterial enzymes in human microbiota is still limited. Hence, to characterize drug utilization capabilities across all the microbial phyla inside the human gut, we have used a knowledge-based approach to develop HgutMgene-Miner software which predicts xenobiotic metabolizing enzymes (XMEs) through genome mining.
View Article and Find Full Text PDFFood Chem Toxicol
January 2025
Department of Molecular and Translational Medicine, University of Brescia, Italy.
Background: Methylglyoxal (MGO), a highly reactive precursor of advanced glycation end products (AGEs), is endogenously produced and prevalent in various ultra-processed foods. MGO has emerged as a significant precursor implicated in the pathogenesis of type 2 diabetes and neurodegenerative diseases. To date, the effects of dietary MGO on the intestine have been limited explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!