Influenza A Virus Hemagglutinin Is Produced in Different Disulfide-Bonded States.

Antioxid Redox Signal

ACRF Centenary Cancer Research Centre, The Centenary Institute, Camperdown, New South Wales, Australia.

Published: November 2021

Influenza A virus hemagglutinin (HA) binding to sialic acid on lung epithelial cells triggers membrane fusion and infection. Host thiol isomerases have been shown to play a role in influenza A virus infection, and we hypothesized that this role involved manipulation of disulfide bonds in HA. Analysis of HA crystal structures revealed that three of the six HA disulfides occur in high-energy conformations and four of the six bonds can exist in unformed states, suggesting that the disulfide landscape of HA is generally strained and the bonds may be labile. We measured the redox state of influenza A virus HA disulfide bonds and their susceptibility to cleavage by vascular thiol isomerases. Using differential cysteine alkylation and mass spectrometry, we show that all six HA disulfide bonds exist in unformed states in ∼1 in 10 recombinant and viral surface HA molecules. Four of the six H1 and H3 HA bonds are cleaved by the vascular thiol isomerases, thioredoxin and protein disulphide isomerase, in recombinant proteins, which correlated with surface exposure of the disulfides in crystal structures. In contrast, viral surface HA disulfide bonds are impervious to five different vascular thiol isomerases. It has been assumed that the disulfide bonds in mature HA protein are intact and inert. We show that all six HA disulfide bonds can exist in unformed states. These findings indicate that influenza A virus HA disulfides are naturally labile but not substrates for thiol isomerases when expressed on the viral surface.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ars.2021.0033DOI Listing

Publication Analysis

Top Keywords

disulfide bonds
24
influenza virus
20
thiol isomerases
20
bonds exist
12
exist unformed
12
unformed states
12
vascular thiol
12
viral surface
12
bonds
9
virus hemagglutinin
8

Similar Publications

Magnetic relaxation switch biosensor for detection of Vibrio parahaemolyticus based on photocleavable hydrogel.

Anal Chim Acta

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China. Electronic address:

Background: Foodborne pathogens, particularly Vibrio parahaemolyticus (VP) found in seafood, pose significant health risks, including abdominal pain, nausea, and even death. Rapid, accurate, and sensitive detection of these pathogens is crucial for food safety and public health. However, existing detection methods often require complex sample pretreatment, which limits their practical application.

View Article and Find Full Text PDF

To elucidate the effect of transglutaminase (TG) on the rheological properties of wheat gluten, this study investigates the underlying mechanisms by analyzing changes in gluten structure. The results demonstrated that the TG-treated gluten samples had higher storage modulus (G') and loss modulus (G″) compared to the control, conversely, creep and recovery strains followed an opposite trend. Notably, the most pronounced effects were observed with adding 2 U/g TG for 20-30 min.

View Article and Find Full Text PDF

Using reduced sericin as a green resist for precise pattern fabrication via water-based lithography.

J Colloid Interface Sci

December 2024

Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an, University of Technology, Xi'an 710048, PR China.

The use of toxic resists and complex procedures has impeded the resolution and quality of micro/nanofabrication on virtually arbitrary substrates via photolithography. To fabricate a precise and high-resolution pattern, a sericin nanofilm-based coating was developed by reducing disulfide bonds and subsequently assembling sericin protein. Upon exposure to ultraviolet (UV) light, intermolecular amide bonds in sericin are cleaved through the action of a reducing agent, allowing the reduced sericin (rSer) coating to exhibit the functional ability to generate diverse geometric micro/nanopatterns through photomask-governed photolithography.

View Article and Find Full Text PDF

Supramolecular transparent plastic engineering covalent-and-supramolecular polymerization.

Mater Horiz

January 2025

College of Chemistry and Chemical Engineering, Hunan University, Hunan 410082, P. R. China.

Supramolecular glass and plastic are a new generation of artificial transparent materials that exhibit excellent optical behavior and processability. However, owing to inherent deficiencies in their mechanical toughness and long-term stability, supramolecular materials lack the potential for functionalization and application. Inspired by the toughening phenomena in biological systems, a synergistic covalent-and-supramolecular polymerization strategy was applied to construct plastic-like supramolecular materials with high transmittance the solvent-free one-pot amidation of thioctic acid and (poly)amines.

View Article and Find Full Text PDF

Self-healing optically transparent polyimides have potential applications in optoelectronic device fabrication. In this study, for the first time, we successfully prepared a novel self-healing polyimide film containing reversible disulfide bonds through chemical imidization by introducing cystamine as a self-healing functional monomer into the molecular structure of conventional polyimides. The incorporation of cystamine enabled the films to maintain high transmittance (>87%) and tensile strength (>99 MPa).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!