Terahertz flat optics is a design concept for replacing conventional three-dimensional bulky optical components with two-dimensional ultra-thin optical components. However, high refractive index materials suitable for flat optics are frequently subject to high Fresnel reflections due to the cumbersome control of the relative permeability it requires. Here we experimentally demonstrate a reflectionless metasurface with a high refractive index of 5.88 + j1.57, extremely low reflectance of 1.3%, high relative permittivity of 6.73 + j0.85, and the high relative permeability of 5.03 + j2.11 at 2.97 THz. The super-fine ink-jet printer using silver paste ink fabricates the metasurface consisting of 80,036 pairs of cut metal wires on both the front and back of a 5 μm-thick polyimide film. The findings also demonstrate that weak conductors as well as good conductors can be used in the design of reflectionless metasurfaces with a high refractive index in the terahertz waveband. The presented metasurface can offer an accessible platform for terahertz flat optics in 6G (beyond 5G) wireless communications and imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.420827DOI Listing

Publication Analysis

Top Keywords

high refractive
16
flat optics
12
reflectionless metasurface
8
metasurface high
8
refractive terahertz
8
terahertz waveband
8
terahertz flat
8
optical components
8
relative permeability
8
high relative
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!