Noise-like quasi-continuous-wave background (qCWB) in a mode-locked fiber laser mediates various multi-pulse dynamics via long-range inter-pulse interactions. This raises a possibility to control multi-pulse phenomena through manipulation of the qCWB, while it has been rarely studied yet. Here, we investigate the qCWB engineering by imposing optomechanically induced impulsive intensity modulations on the qCWB. The mode-locked pulses excite electrostrictively several transverse acoustic resonance modes inside the fiber cavity, which eventually leads to the formation of sharp qCWB modulations regularly spaced in the time domain. In particular, we experimentally demonstrate that the characteristics of the optomechanical qCWB modulations can be adjusted by controlling the in-fiber optomechanical interactions via changing the structure of the fiber core, cladding, and coating. Our observations are supported by directly measured forward stimulated Brillouin scattering spectra of the intracavity fibers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.419460 | DOI Listing |
Noise-like quasi-continuous-wave background (qCWB) in a mode-locked fiber laser mediates various multi-pulse dynamics via long-range inter-pulse interactions. This raises a possibility to control multi-pulse phenomena through manipulation of the qCWB, while it has been rarely studied yet. Here, we investigate the qCWB engineering by imposing optomechanically induced impulsive intensity modulations on the qCWB.
View Article and Find Full Text PDFLasers Surg Med
October 2019
National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
Background And Objective: Despite the successful application of laser in animal experiments and clinics, the adjustment of laser parameters during surgery is still unclear. This study aimed to investigate the effect of different 980-nm diode laser parameters in hepatectomy. This could provide a clear protocol for using 980-nm diode laser in hepatectomy.
View Article and Find Full Text PDFLasers Surg Med
February 2016
Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital Research Institute, Charlestown, Massachusetts, 02129.
Background: Ablative fractional laser procedures have been shown to facilitate topical drug delivery into the skin. Past studies have mainly used ex vivo models to demonstrate enhanced drug delivery and in vivo studies have investigated laser created channels over a time course of days and weeks rather than within the first few minutes and hours after exposures. We have noticed rapid in vivo fibrin plug formation within ablative fractional laser lesions impairing passage through the laser created channels.
View Article and Find Full Text PDFWe predict that parametric sum-frequency generation of an ultra-short pulse may result from the mixing of an ultra-short optical pulse with a quasi-continuous wave control. We analytically show that the intensity, time duration and group velocity of the generated idler pulse may be controlled in a stable manner by adjusting the intensity level of the background pump.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!