Dual-frequency optoelectronic oscillators (OEOs) have potential applications in dual-band wireless networking and dual-parameter sensing systems. We propose a dual-frequency OEO incorporating a multiband microwave photonic filter (MPF). In particular, the two microwave signals are generated simultaneously in a single OEO cavity. By simply varying the parameters of optical spectral slicing and sampling (e.g., with a programmable optical filter) used to implement the MPF, we can readily achieve simultaneous tuning of the dual-frequency output, as well as alternate switching between single-frequency and dual-frequency output. The multi-passband nature of the MPF, enabled via optical spectral slicing, opens a path to multi-frequency OEO operation by scaling our scheme in the future. Such a structure provides a flexible way to generate simultaneously tunable and reconfigurable multi-frequency microwave signals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.423148 | DOI Listing |
Adv Mater
December 2024
Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
Through the stacking technique of 2D materials, the interfacial polarization can be switched by an interlayer sliding, known as sliding ferroelectricity, which is advantageous in ultra-thin thickness, high switching speed, and high fatigue resistance. However, uncovering the relationship between the sliding path and the polarization state in rhombohedral-stacked materials remains a challenge, which is the key to 2D sliding ferroelectricity. Here, layer-dependent multidirectional sliding ferroelectricity in rhombohedral-stacked InSe (γ-InSe) is reported via dual-frequency resonance tracking piezoresponse force microscopy and conductive atomic force microscopy.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Biophysics, Faculty of Science, Cairo University, Giza, 12613, Egypt.
We propose and experimentally demonstrate an injection-locked broadband optoelectronic oscillator (OEO) to generate freely tunable phase-locked dual-frequency microwave signals. When two single-tone signals inside and outside the passband of the electrical broadband bandpass filter (BPF) are, respectively, injected into the OEO, a phase-locked dual-frequency microwave signal with ultra-low near-end side-mode spurs can be generated from the OEO cavity. Therefore, one frequency of the output signal is equal to the frequency of the injected signal within the BPF, and the other frequency is equal to the sum frequency or the differential frequency of two injected signals.
View Article and Find Full Text PDFAnal Chem
September 2024
School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, China.
To achieve high sensitivity detection of dual-component greenhouse gases carbon dioxide and methane simultaneously, a multimechanism synergistic enhanced all-optical photoacoustic spectroscopy gas analyzer is presented. The acoustic resonance of the photoacoustic cell and the mechanical resonance of a fiber-optic cantilever acoustic sensor are used to enhance the photoacoustic signals of the dual-component gas. The optimized multipass beam reflection structure enhances the effective excitation power of the dual-component gas.
View Article and Find Full Text PDFAn approach to generating stable phase-locked dual-frequency microwave signals is proposed and demonstrated based on a dual-passband optoelectronic oscillator (OEO). Mode gain competition is broken by employing frequency mixing mutual injection effect to realize phase locking between the two oscillation signals, which is achieved by applying a single-tone signal to a microwave mixer in the OEO cavity. In addition, a dual-loop configuration with balanced detection is utilized to ensure a high side mode suppression ratio (SMSR) and ultra-low phase noise, which also enhances the stability of the generated signal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!