Dispersion characteristics of hybrid surface plasmon-phonon-polaritons (SPPhPs) on the air/polar semiconductor interface were investigated by means of shallow surface relief grating using emission spectroscopy methods. A set of grating structures with optimal 1 µm depth and periods from 8 to 22 µm was developed on a heavily-doped GaN crystal. The SPPhPs were excited by thermal heating or electrical biasing of the samples which radiated directive polarized features in an extremely narrowband spectrum range. Detailed analysis of damping factors and propagation losses revealed maximum values of quality factor and spatial coherence of hybrid SPPhPs modes. Highest quality factor was found to be practically independent on the period of the shallow grating, as it was always detected near the frequency of transverse optical phonon, demonstrating values as high as 88 and 200 in experiment and theory, respectively. Meanwhile, the largest values of coherence length strongly depended on the grating as the propagation losses of hybrid SPPhP modes showed a tendency to accumulate with the wavevector increase. The sample with 22 µm grating period demonstrated the highest coherence of hybrid polaritons with the experimental (theoretical) coherence length values as high as 1.6 mm (2.3 mm).

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.423397DOI Listing

Publication Analysis

Top Keywords

coherence hybrid
12
spatial coherence
8
hybrid surface
8
surface plasmon-phonon-polaritons
8
propagation losses
8
quality factor
8
values high
8
coherence length
8
hybrid
5
grating
5

Similar Publications

The quantum-well-like two-dimensional lead-halide perovskites exhibit strongly confined excitons due to the quantum confinement and reduced dielectric screening effect, which feature intriguing excitonic effects. The ionic nature of the perovskite crystal and the "softness" of the lattice induce the complex lattice dynamics. There are still open questions about how the soft lattices decorate the nature of excitons in these hybrid materials.

View Article and Find Full Text PDF

Is digital-green synergy the future of carbon emission performance?

J Environ Manage

January 2025

School of Economics and Management, China University of Geosciences, Wuhan, 430078, China. Electronic address:

Amid the new industrial revolution, digital technology and green finance play pivotal roles in shifting towards a low-carbon economy. This paper establishes a coherent research framework by integrating digital technology, green financing, and carbon emission performance. Utilizing a multifaceted dataset that combines provincial panel data with corporate listings databases, this study evaluates the development of green finance using a hybrid weighing methodology that merges the analytical hierarchy process (AHP) with the spatial-temporal entropy weight method.

View Article and Find Full Text PDF

Quantum Dynamics Simulations of Exciton Polariton Transport.

Nano Lett

January 2025

Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.

Recent experiments have shown that exciton transport can be significantly enhanced through hybridization with confined photonic modes in a cavity. The light-matter hybridization generates exciton-polariton (EP) bands, whose group velocity is significantly larger than the excitons. Dissipative mechanisms that affect the constituent states of EPs, such as exciton-phonon coupling and cavity loss, have been observed to reduce the group velocities in experiments.

View Article and Find Full Text PDF

Taming chimeras in coupled oscillators using soft actor-critic based reinforcement learning.

Chaos

January 2025

Complex Systems Group, Department of Mathematics and Statistics, The University of Western Australia, Crawley, Western Australia 6009, Australia.

We propose a universal method based on deep reinforcement learning (specifically, soft actor-critic) to control the chimera state in the coupled oscillators. The policy for control is learned by maximizing the expectation of the cumulative reward in the reinforcement learning framework. With the aid of the local order parameter, we design a class of reward functions for controlling the chimera state, specifically confining the spatial position of coherent and incoherent domains to any desired lateral position of oscillators.

View Article and Find Full Text PDF

All-Optical Generation and Detection of Coherent Acoustic Vibrations in Single Gallium Phosphide Nanoantennas Probed near the Anapole Excitation.

Nano Lett

January 2025

Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina.

Nanostructured high-index dielectrics have shown great promise as low-loss photonic platforms for wavefront control and enhancing optical nonlinearities. However, their potential as optomechanical resonators has remained unexplored. In this work, we investigate the generation and detection of coherent acoustic phonons in individual crystalline gallium phosphide nanodisks on silica in a pump-probe configuration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!