We propose a complementary phase detection algorithm to enhance the capabilities of the multi-tone continuous wave (MTCW) lidar for single-shot simultaneous ranging and velocimetry measurements. We show that the phase of the Doppler-shifted RF tones and the amount of the induced Doppler frequency shift can be used to extract the phase and velocity information, simultaneously. A numerical case study and experimental work have been performed for the proof of concept. We show that the velocity resolutions are limited by frequency resolution and the ranging resolution is determined by the temporal resolution. Experimentally, we obtain 8.08 ± 0.8cm/s velocity measurement and 111.9cm range measurements with ±0.75cm resolution in a 6-tone MTCW lidar system.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.422710DOI Listing

Publication Analysis

Top Keywords

mtcw lidar
12
ranging velocimetry
8
velocimetry measurements
8
measurements phase-based
4
phase-based mtcw
4
lidar propose
4
propose complementary
4
complementary phase
4
phase detection
4
detection algorithm
4

Similar Publications

We propose a complementary phase detection algorithm to enhance the capabilities of the multi-tone continuous wave (MTCW) lidar for single-shot simultaneous ranging and velocimetry measurements. We show that the phase of the Doppler-shifted RF tones and the amount of the induced Doppler frequency shift can be used to extract the phase and velocity information, simultaneously. A numerical case study and experimental work have been performed for the proof of concept.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!