We explore recurrent and feedforward neural networks to mitigate severe inter-symbol interference (ISI) caused by bandlimited channels, such as high speed optical communications systems pushing the frequency response of transmitter components. We propose a novel deep bidirectional long short-term memory (BiLSTM) architecture that strongly emphasizes dependencies in data sequences. For the first time, we demonstrate via simulation that for QPSK transmission the deep BiLSTM achieves the optimal bit error rate performance of a maximum likelihood sequence estimator (MLSE) with perfect channel knowledge. We assess performance for a variety of channels exhibiting ISI, including an optical channel at 100 Gbaud operation using a 35 GHz silicon photonic (SiP) modulator. We show how the neural network performance deteriorates with increasing modulation order and ISI severity. While no longer achieving MLSE performance, the deep BiLSTM greatly outperforms linear equalization in these cases. More importantly, the neural network requires no channel state information, while its performance is comparable to conventional equalizers with perfect channel knowledge.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.423103DOI Listing

Publication Analysis

Top Keywords

neural networks
8
achieving mlse
8
mlse performance
8
optical channel
8
deep bilstm
8
perfect channel
8
channel knowledge
8
neural network
8
performance
6
channel
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!