Phase measuring deflectometry (PMD) is an effective technique for three-dimensional measurement of specular surfaces. However, the ambiguity of monoscopic PMD and the time-consuming searching process of stereoscopic PMD are challenges for specular surface reconstruction. To solve it, we propose an iterative reconstruction algorithm for the stereoscopic phase measuring deflectometry system free of the time-consuming searching process for each pixel. An arbitrary seed point on the specular surface is accurately obtained via a coarse-to-fine optimization means without any other expensive and complicate auxiliaries. Then, a plane with the height of seed point is set as the initial surface form for the iteration, in which the pinhole model is used to find the linear relation to update the surface form. The converging height is the output as the final result. Simulations and experiments verify the feasibility and efficiency of our proposed method based on the stereoscopic phase measuring deflectometry system. The accuracy and robustness are comprehensively evaluated as well.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.421898 | DOI Listing |
This paper proposes an imaging technique to remove strong reflections from specular surfaces using polarization characteristics combined with light field imaging. Firstly, the correct strong reflection region is found by studying the reflected light characteristics, and the strong reflection region highlights are filtered out using Stokes parameters based on polarization information. Then, a system of microlens arrays with different transmittances was built for imaging, and the system was image-corrected to enable more information about the scene to be captured.
View Article and Find Full Text PDFThe traditional phase shift measurement technique necessitates two orthogonally oriented fringe patterns to complete the phase measurement, which is time-consuming, and the phase modulation of the traditional fringe image exhibits only a gradient change in a single direction of the horizontal-vertical fringes, or a smooth gradient change in the tangential direction of the circular fringes. To enhance the measurement speed and improve the adaptability to large curvature measured specular surfaces, this paper proposes a phase measurement deflectometry (PMD) technique based on composite circular fringes. The composite circular fringes demonstrate a steeper slope in the phase change, enabling the acquisition of finer surface features under identical measurement conditions, effectively improving the detection sensitivity to small shape changes and enhancing the ability to discern fine details.
View Article and Find Full Text PDFForensic Sci Int
January 2025
Department of Forensic Science and Technology, Sichuan Police College, No. 186, Longtouguan Road, Jiangyang District, Luzhou 646000, China; Sichuan Provincial Key Lab of Intelligent Policing, No. 186, Longtouguan Road, Jiangyang District, Luzhou 646000, China. Electronic address:
The firing pin impression left on the base of a cartridge case is a critical analytical feature in forensic science. To address the limitations of traditional manual trace analysis and mitigate the risk of secondary damage to physical evidence, we employ a line laser displacement sensor to capture and analyze three-dimensional (3D) traces of fired cartridge cases. However, when using laser displacement sensors to collect traces from metal cartridge cases, the high curvature and reflectivity of the metal surface can cause specular reflections, potentially leading to measurement anomalies in the firing pin impressions.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electrical Engineering, Chinese Culture University, Taipei 11114, Taiwan.
This paper presents an effective three-dimensional (3D) surface reconstruction technique aimed at profiling composite surfaces with both specular and diffuse reflectance. Three-dimensional measurements based on fringe projection techniques perform well on diffuse reflective surfaces; however, when the measurement targets contain both specular and diffuse components, the efficiency of fringe projection decreases. To address this issue, the proposed technique integrates digital holography into the fringe projection setup, enabling the simultaneous capture of both specular and diffuse reflected light in the same optical path for full-field surface profilometry.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Zhangjiang Laboratory, Shanghai, 201204, China.
Boasting superior flexibility in beam manipulation and a simpler framework than traditional phased arrays, terahertz metasurface-based phased arrays show great promise for 5G-A/6G communication networks. Compared with the reflective reconfigurable intelligent surface (reflective RIS), the transmissive RIS (TRIS) offers more feasibility for transceiver multiplexing systems to meet the growing demand for high-performance beam tracking in terahertz communication and radar systems. However, the terahertz TRIS encounters greater challenges in phase shift, beam efficiency, and complex circuitry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!