A resveratrol-loaded nanostructured lipid carrier hydrogel to enhance the anti-UV irradiation and anti-oxidant efficacy.

Colloids Surf B Biointerfaces

Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China. Electronic address:

Published: August 2021

AI Article Synopsis

  • Exposure to UV radiation can cause DNA damage and increase the risk of skin cancer, highlighting the importance of using sunscreen.
  • Resveratrol (RES) has beneficial properties due to its high UV absorption and antioxidant effects, but its instability under UV light limits its effectiveness.
  • A new formulation, RES-NLC-gel, enhances the stability and skin penetration of RES, showing promising results in protecting against UV damage and improving skin health in experimental models.

Article Abstract

Exposure to ultraviolet (UV) irradiation leads to the generation of reactive oxygen species (ROS) and DNA damage in skin tissue, which can further result in skin cancers. Using sunscreens is one of the most popular and the most effective method to resist UV irradiation. Resveratrol (RES) shows high absorbance in UV region and significant anti-oxidant effects. However, RES is easily degraded by UV irradiation, resulting in the decrease of bioactivity and the limitation of its application in the pharmaceutical preparations of skin. In this paper, a nanostructured lipid carrier gel loaded with RES (RES-NLC-gel) was prepared to improve the stability of RES and the accumulation of RES in the epidermis. Moreover, RES-NLC-gel could scavenge free radical effectively and protect human keratinocyte from UV irradiation by inhibiting the generation of ROS, decreasing the protein expression of cleaved caspase-3 and Bax and increasing the protein expression of Bcl-2. When mice skin was pretreated with RES-NLC-gel, there were less erythema, wrinkles and scabs on mice skin. The epidermal thickness of mice skins obviously reduced in dose-dependent manner. The activities of catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) in mice skin tissue significantly increased. Thus, RES-NLC-gel exhibited an obvious anti-UV irradiation and anti-oxidant activity in vivo. RES-NLC-gel displayed great application potential in protecting skin from UV irradiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2021.111786DOI Listing

Publication Analysis

Top Keywords

mice skin
12
nanostructured lipid
8
lipid carrier
8
anti-uv irradiation
8
irradiation anti-oxidant
8
skin tissue
8
protein expression
8
irradiation
7
skin
7
res
5

Similar Publications

A Low-Modulus Phosphatidylserine-Exposing Microvesicle Alleviates Skin Inflammation via Persistent Blockade of M1 Macrophage Polarization.

Int J Mol Sci

January 2025

Department of Material Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.

Inflammatory skin diseases comprise a group of skin conditions characterized by damage to skin function due to overactive immune responses. These disorders not only impair the barrier function of the skin but also deteriorate the quality of life and increase the risk of psychiatric issues. Here, a low-modulus phosphatidylserine-exposing microvesicle (deformed PSV, D-PSV) was produced, characterized, and evaluated for its potential therapeutic function against skin diseases.

View Article and Find Full Text PDF

We previously demonstrated that C-X-C Motif Chemokine Ligand 12 (CXCL12) is primarily secreted by dermal fibroblasts in response to androgens and induces hair miniaturization in the mouse androgenic alopecia (AGA) model. However, the direct effects of androgen-induced CXCL12 on dermal papilla cells (DPCs) and dermal sheath cup cells (DSCs) have not been demonstrated. First, we compared single-cell RNA sequencing data between mouse and human skin, and the results show that CXCL12 is highly co-expressed with the androgen receptor (AR) in the DPCs and DSCs of only human hair.

View Article and Find Full Text PDF

Guggulsterone ameliorates psoriasis by inhibiting keratinocyte proliferation and inflammation through induction of miR-17 directly targeting JAK1 and STAT3.

Biochem Pharmacol

January 2025

Department of Dermatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan 250011, China. Electronic address:

The pathogenesis of psoriasis involves hyperproliferation of epidermal keratinocytes and abnormal interactions between activated keratinocytes and infiltrating immune cells. Emerging evidence has shown that keratinocytes play essential roles in both the initiation and maintenance of psoriasis, suggesting that exposing keratinocytes to agents with antiproliferative and anti-inflammatory effects may be effective for psoriasis treatment. Guggulsterone (GS), a plant sterol derived from the gum resin of Commiphora wightii, possesses a variety of pharmacological activities.

View Article and Find Full Text PDF

The aim of this study was to investigate how ultraviolet B (UVB) light regulates AP-1 expression via the β2-adrenergic receptor (β2-AR) in epidermal keratinocytes, which in turn regulates melanin synthesis in melanocytes, thereby modulating downstream melanin production in skin hair follicles and altering mouse skin color. We established a UV-irradiated mouse model to investigate the effects of UV radiation on changes in skin color. By measuring changes in the expression of genes related to cutaneous sympathetic nerves, norepinephrine synthesis and melanin synthesis, we investigated the relationship between β2-AR expression and cutaneous melanogenesis and determined the localization of β2-AR in cells.

View Article and Find Full Text PDF

Confined cell migration along extracellular matrix space in vivo.

Proc Natl Acad Sci U S A

January 2025

Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.

Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!