25-hydroxycholesterol (25-OH), a molecule with unusual behavior at the air/water interface, being anchored to the water surface alternatively with a hydroxyl group at C(3) or C(25), has been investigated in mixtures with main membrane phospholipids (phosphatidylcholines - PCs, and phosphatidylethanolamines - PEs), characteristic of the outer and inner membrane leaflet, respectively. To achieve this goal, the classical Langmuir monolayer approach based on thermodynamic analysis of interactions was conducted in addition to microscopic imaging of films (in situ with BAM and after transfer onto mica with AFM), surface-sensitive spectroscopy (PM-IRRAS), as well as theoretical calculations. Our results show that the strength of interactions is primarily determined by the kind of polar group (strong, attractive interactions leading to surface complexes formation were found to occur with PCs while weak or repulsive ones with PEs). Subsequently, the saturation of phosphatidylcholines apolar chain(s) was found to be crucial for the structure of the formed complexes. Namely, saturated PC (DPPC) does not have preferences regarding the orientation of 25-OH molecule in surface complexes (which results in the two possible 25-OH arrangements), while unsaturated PC (DOPC) enforces one specific orientation of oxysterol (with C(3)-OH group). Our findings suggest that the transport of 25-OH between inner and outer membrane leaflet can proceed without orientation changes, which is thermodynamically advantageous. This explains results found in real systems showing significant differences in the rate of transmembrane transport of 25-OH and the other chain-oxidized oxysterols compared to their ring-oxidized analogues or cholesterol.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsbmb.2021.105909DOI Listing

Publication Analysis

Top Keywords

membrane leaflet
12
inner outer
8
outer membrane
8
langmuir monolayer
8
theoretical calculations
8
25-oh molecule
8
surface complexes
8
transport 25-oh
8
25-oh
5
25-hydroxycholesterol interacts
4

Similar Publications

Computational Insights into Membrane Disruption by Cell-Penetrating Peptides.

J Chem Inf Model

January 2025

Unit of Biophysics, Department of Biochemistry and Molecular Biology, Facultat de Medicina, Av. Can Domènech s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain.

Cell-penetrating peptides (CPPs) can translocate into cells without inducing cytotoxicity. The internalization process implies several steps at different time scales ranging from microseconds to minutes. We combine adaptive Steered Molecular Dynamics (aSMD) with conventional Molecular Dynamics (cMD) to observe nonequilibrium and equilibrium states to study the early mechanisms of peptide-bilayer interaction leading to CPPs internalization.

View Article and Find Full Text PDF

Background: Left atrial dissection is a rare and occasionally fatal complication of cardiac surgery and is defined as the creation of a false chamber through a tear in the mitral valve annulus extending into the left atrial wall. Some patients are asymptomatic, while others present with various symptoms, such as chest pain, dyspnea, and even cardiac arrest. Although there is no established management for left atrial dissection, surgery should be considered in patients with hemodynamic disruption.

View Article and Find Full Text PDF

Cannabinoid receptor 1 (CB1R) has been extensively studied as a potential therapeutic target for various conditions, including pain management, obesity, emesis, and metabolic syndrome. Unlike orthosteric agonists such as Δ-tetrahydrocannabinol (THC), cannabidiol (CBD) has been identified as a negative allosteric modulator (NAM) of CB1R, among its other pharmacological targets. Previous computational and structural studies have proposed various binding sites for CB1R NAMs.

View Article and Find Full Text PDF

Chemistries on the inner leaflet of the cell membrane.

Chem Commun (Camb)

January 2025

Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.

The cell membrane, characterized by its inherent asymmetry, functions as a dynamic barrier that regulates numerous cellular activities. This Highlight aims to provide the chemistry community with a comprehensive overview of the intriguing and underexplored inner leaflet, encompassing both fundamental biology and emerging synthetic modification strategies. We begin by describing the asymmetric nature of the plasma membrane, with a focus on the distinct roles of lipids, proteins, and glycan chains, highlighting the composition and biofunctions of the inner leaflet and the biological mechanisms that sustain membrane asymmetry.

View Article and Find Full Text PDF

Spatiotemporal pattern formation of membranes induced by surface molecular binding/unbinding.

Soft Matter

January 2025

Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.

Nonequilibrium membrane pattern formation is studied using meshless membrane simulation. We consider that molecules bind to either surface of a bilayer membrane and move to the opposite leaflet by flip-flop. When binding does not modify the membrane properties and the transfer rates among the three states are cyclically symmetric, the membrane exhibits spiral-wave and homogeneous-cycling modes at high and low binding rates, respectively, as in an off-lattice cyclic Potts model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!