Modeling chemotherapy induced neurotoxicity with human induced pluripotent stem cell (iPSC) -derived sensory neurons.

Neurobiol Dis

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik und Hochschulambulanz für Neurologie, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Anna-Louisa-Karsch Straße 2, 10178 Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), partner site Berlin, Germany; German Center for Cardiovascular Research (DZHK), partner site Berlin, Germany.

Published: July 2021

Chemotherapy-induced peripheral neuropathy (CIPN) is a frequent, potentially irreversible adverse effect of cytotoxic chemotherapy often leading to a reduction or discontinuation of treatment which negatively impacts patients' prognosis. To date, however, neither predictive biomarkers nor preventive treatments for CIPN are available, which is partially due to a lack of suitable experimental models. We therefore aimed to evaluate whether sensory neurons derived from induced pluripotent stem cells (iPSC-DSN) can serve as human disease model system for CIPN. Treatment of iPSC-DSN for 24 h with the neurotoxic drugs paclitaxel, bortezomib, vincristine and cisplatin led to axonal blebbing and a dose dependent decline of cell viability in clinically relevant IC ranges, which was not observed for the non-neurotoxic compounds doxorubicin and 5-fluorouracil. Paclitaxel treatment effects were less pronounced after 24 h but prominent when treatment was applied for 72 h. Global transcriptome analyses performed at 24 h, i.e. before paclitaxel-induced cell death occurred, revealed the differential expression of genes of neuronal injury, cellular stress response, and sterol pathways. We further evaluated if known neuroprotective strategies can be reproduced in iPSC-DSN and observed protective effects of lithium replicating findings from rodent dorsal root ganglia cells. Comparing sensory neurons derived from two different healthy donors, we found preliminary evidence that these cell lines react differentially to neurotoxic drugs as expected from the variable presentation of CIPN in patients. In conclusion, iPSC-DSN are a promising platform to study the pathogenesis of CIPN and to evaluate neuroprotective treatment strategies. In the future, the application of patient-specific iPSC-DSN could open new avenues for personalized medicine with individual risk prediction, choice of chemotherapeutic compounds and preventive treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2021.105391DOI Listing

Publication Analysis

Top Keywords

sensory neurons
12
induced pluripotent
8
pluripotent stem
8
preventive treatments
8
neurons derived
8
neurotoxic drugs
8
cipn
5
treatment
5
ipsc-dsn
5
modeling chemotherapy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!