Objective: This work was designed to explore whether the combination of Tanshinone IIA (T-IIA) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has a direct anti-cancer effect in glioblastoma (GBM) and the possible mechanisms.

Methods: GBM cells (U-87 and U-251 MG) were treated with T-IIA or/and TRAIL, or the expression of death receptors (DRs), DR4 and DR5, was suppressed in GBM cells. The activity of GBM cells was determined by MTT, and the apoptosis was assessed by Hoechst33342 staining and flow cytometry. The expression levels of cleaved caspase-3/8/9, phosphorylated (p)-STAT3 as well as DR4 and DR5 in GBM cells were assessed by Western blotting. A nude mouse xenograft model was constructed to evaluate the effects of T-IIA and TRAIL cotreatment on tumor growth and apoptosis in vivo.

Results: After T-IIA treatment, GBM cells resumed the sensitivity to TRAIL-induced apoptosis dependent on inhibition of p-STAT3 and activation of DR4, DR5 and caspases. DR4 or/and DR5 knockdown significantly abated the co-effect of T-IIA and TRAIL on GBM cell apoptosis and proliferation. Furthermore, T-IIA and TRAIL cotreatment markedly inhibited the growth of transplanted tumor and activated U87 cell apoptosis in nude mice.

Conclusion: T-IIA increases TRAIL-induced apoptosis by downregulating STAT3 and upregulating DR4 and DR5, indicating T-IIA therapy as a novel treatment strategy for TRAIL-resistant GBM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2021.147515DOI Listing

Publication Analysis

Top Keywords

gbm cells
20
dr4 dr5
16
trail-induced apoptosis
12
t-iia trail
12
tanshinone iia
8
expression death
8
death receptors
8
t-iia
8
gbm
8
trail cotreatment
8

Similar Publications

Glioblastoma multiforme (GBM) is a highly aggressive and malignant brain tumor originating from glial cells, characterized by high recurrence rates and poor patient prognosis. The heterogeneity and complex biology of GBM, coupled with the protective nature of the blood-brain barrier (BBB), significantly limit the efficacy of traditional therapies. The rapid development of nanoenzyme technology presents a promising therapeutic paradigm for the rational and targeted treatment of GBM.

View Article and Find Full Text PDF

Understanding the Immune System and Biospecimen-Based Response in Glioblastoma: A Practical Guide to Utilizing Signal Redundancy for Biomarker and Immune Signature Discovery.

Curr Oncol

December 2024

Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA.

Glioblastoma (GBM) is a primary central nervous system malignancy with a median survival of 15-20 months. The presence of both intra- and intertumoral heterogeneity limits understanding of biological mechanisms leading to tumor resistance, including immune escape. An attractive field of research to examine treatment resistance are immune signatures composed of cluster of differentiation (CD) markers and cytokines.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a highly aggressive brain tumor characterized by its ability to evade the immune system, hindering the efficacy of current immunotherapies. Recent research has highlighted the important role of immunosuppressive macrophages in the tumor microenvironment (TME) in driving this immune evasion. In this study, we are the first to identify as a key regulator of tumor-associated macrophage (TAM)-mediated immunosuppression in GBM.

View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) is one of the deadliest and most heterogeneous forms of brain cancer, characterized by its resistance to conventional therapies. Within GBM, a subpopulation of slow-cycling cells, often linked to quiescence and stemness, plays a crucial role in treatment resistance and tumor recurrence. This study aimed to identify novel biomarkers associated with these slow-cycling GBM cells.

View Article and Find Full Text PDF

DET induces apoptosis and suppresses tumor invasion in glioma cells via PI3K/AKT pathway.

Front Oncol

January 2025

The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China.

Introduction: Gliomas, particularly glioblastomas (GBM), are highly aggressive with a poor prognosis and low survival rate. Currently, deoxyelephantopin (DET) has shown promising anti-inflammatory and anti-tumor effects. Using clinical prognostic analysis, molecular docking, and network pharmacology, this study aims to explore the primary targets and signaling pathways to identify novel GBM treatment approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!