The development of continuous monitoring systems requires sensors that are capable of screening multiple chemical species and providing real-time information. Such measurements, in which the sample is analyzed at the point of interest, are hindered by underlying problems derived from the recording of successive measurements within complex environments. In this context, surface-enhanced Raman scattering (SERS) spectroscopy appears as a noninvasive technology with the ability of identifying low concentrations of chemical species as well as resolving dynamic processes under different conditions. To this aim, the technique requires the use of a plasmonic substrate, typically made of nanostructured metals such as gold or silver, to enhance the Raman signal of adsorbed molecules (the analyte). However, a common source of uncertainty in real-time SERS measurements originates from the irreversible adsorption of (analyte) molecules onto the plasmonic substrate, which may interfere in subsequent measurements. This so-called "SERS memory effect" leads to measurements that do not accurately reflect varying conditions of the sample over time. We introduce herein the design of plasmonic substrates involving a nonpermeable poly(lactic-co-glycolic acid) (PLGA) thin layer on top of the plasmonic nanostructure, toward controlling the adsorption of molecules at different times. The polymeric layer can be locally degraded by irradiation with the same laser used for SERS measurements (albeit at a higher fluence), thereby creating a micrometer-sized window on the plasmonic substrate available to molecules present in solution at a selected measurement time. Using SERS substrates coated with such thermolabile polymer layers, we demonstrate the possibility of performing over 10,000 consecutive measurements per substrate as well as accurate continuous monitoring of analytes in microfluidic channels and biological systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8158851 | PMC |
http://dx.doi.org/10.1021/acsnano.1c01878 | DOI Listing |
Food Chem
January 2025
School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
Carbaryl is a broad-spectrum carbamate fungicide that may pose a threat to ecosystems and human health. To prevent and control the harm caused by excessive application of carbaryl, a full-dimensional divergence effect SERS sensor has been constructed. Biodegradable paper chips were used as sensor substrates.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, PR China. Electronic address:
Background: The foodborne pathogens, e.g., Salmonella typhimurium (S.
View Article and Find Full Text PDFACS Omega
January 2025
Instituto de Física, Universidad Nacional Autónoma de México, código postal 04510, Mexico City 01000, Mexico.
Understanding the interactions between molecules and sensing elements is crucial to improving sensors. We present one step toward getting closer to the breach between theory and empirical sensor development. Through density functional theory (DFT) calculations, we explored the changes in some optical properties of pristine graphene (G), graphene oxide (GO), and reduced graphene oxide (rGO) interacting with one molecule of acetaminophen (APAP).
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
College of Chemistry, Liaoning University, Shenyang 110036, China. Electronic address:
The adverse effects of Al ions on human health necessitate the development of ultra-sensitive detection methods for Al ions. In this regard, the compact and portable design of the detection substrate is of utmost importance for achieving in-situ and sensitive detection of Al ions. In our study, we have successfully developed a surface-enhanced Raman scattering (SERS) platform with gold nanoparticles (Au NPs) that was modified with histidine (His) and 4-mercaptobenzoic acid (4-MBA) for the SERS detection of Al ions.
View Article and Find Full Text PDFBioorg Chem
January 2025
Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078 China; Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355 China. Electronic address:
Current immobilization approaches for ligand fishing often experience challenges such as limited protein loading capacity and difficulties in the recycling process. To overcome these challenges, we synthesized a magnetic metal-organic frameworks (MMOFs) composite, which can be rapidly separated and has a large specific surface area, and employed it to immobilize acetylcholinesterase (AChE). The synthesized MMOFs@AChE composite exhibited a high immobilization yield (129.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!