Atherosclerotic vascular disease resulting from unstable plaques is the leading cause of morbidity and mortality in subjects with type 2 diabetes (T2D), and thus a major therapeutic goal is to discover T2D drugs that can also promote atherosclerotic plaque stability. Genetic or pharmacologic inhibition of mitogen-activated protein kinase-activated protein kinase-2 (MAPKAPK2 or MK2) in obese mice improves glucose homeostasis and enhances insulin sensitivity. We developed two novel orally active small-molecule inhibitors of MK2, TBX-1 and TBX-2, and tested their effects on metabolism and atherosclerosis in high-fat Western diet (WD)-fed Ldlr-/- mice. Ldlr-/- mice were first fed the WD to allow atherosclerotic lesions to become established, and the mice were then treated with TBX-1 or TBX-2. Both compounds improved glucose metabolism and lowered plasma cholesterol and triglyceride, without an effect on body weight. Most importantly, the compounds decreased lesion area, lessened plaque necrosis, and increased fibrous cap thickness in the aortic root lesions of the mice. Thus, in a preclinical model of high-fat feeding and established atherosclerosis, MK2 inhibitors improved metabolism and also enhanced atherosclerotic plaque stability, suggesting potential for further clinical development to address the epidemic of T2D associated with atherosclerotic vascular disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8118275 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246600 | PLOS |
J Clin Med
December 2024
Department of Oncologic Dermatology-Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
: Vulvar epidermolytic hyperkeratosis (EHK) is an exceedingly rare dermatological condition, often presenting as solitary or multiple lesions in the vulvar region. Due to its clinical resemblance to other vulvar disorders, such as condyloma acuminatum, Bowenoid papulosis, and squamous cell carcinoma, vulvar EHK poses significant diagnostic challenges. While individual case reports and small case series have documented instances of vulvar EHK, comprehensive studies systematically consolidating the clinical, histopathological, and therapeutic aspects of this condition remain lacking.
View Article and Find Full Text PDFCardiovasc Diagn Ther
December 2024
Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Engineering Research Center of Cardiovascular Wisdom Diagnosis and Treatment, Beijing, China.
Background: The prevalence of very high-risk atherosclerotic cardiovascular disease (ASCVD) is significant in China, with suboptimal rates of low-density lipoprotein cholesterol (LDL-C) compliance exacerbating plaque instability and causing a higher incidence of major adverse cardiac events (MACEs). Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) are effective in reducing LDL-C levels, increase the stability of vulnerable plaque, and influence the progression of atherosclerosis through multiple mechanisms as demonstrated in animal studies. However, there is currently a lack of evidence regarding the efficacy and safety of high-intensity statin therapy combined with PCSK9i in the secondary prevention of ASCVD in the Chinese population.
View Article and Find Full Text PDFEur Heart J
January 2025
Division of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji-Cho, Fukui 910-1193, Japan.
Kardiol Pol
January 2025
Core Facilities, Medical University of Vienna, Vienna, Austria.
Micro-ribonucleic acids (miRs) are small, non-coding RNAs, which play an important role in atherosclerotic plaque formation, development, and stability. Plaque destabilization and rupture lead to acute coronary syndromes (ACS). Previous studies have implicated several different miRs in the pathogenesis of atherosclerosis.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel.
Our recent molecular dynamics simulations of decomposing Alzheimer's disease plaques, under oscillating- and static external electric fields (Os-EEFs and St-EEFs), revealed the superiority of Os-EEF for decomposing plaques consisting of the 7-residue peptide segment. This conclusion is now reinforced by studying the dimers of the short peptides and trimers of the full-length Aβ-42 peptide. Thus, the dispersed peptides obtained following St-EEF applications reformed the plaques once the St-EEF subsided.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!