Iodine thyroid blocking (ITB) is effective for preventing childhood thyroid cancer when radioactive iodine is released into the environment during a nuclear power plant accident. Japan employs the pre-distribution of stable iodine (PDSI) to residents living near nuclear power plants; however, the number of residents who have actually received stable iodine to date remains limited. The aim of this study was to evaluate the profile of guardians of children living around the Genkai Nuclear Power Plant (GNPP) in Japan. We distributed self-administered questionnaires regarding perception of risks associated with administration of stable iodide to approximated 400 guardians of children aged 0-6 in 10 kindergartens located in four municipalities. We obtained responses from 286 guardians, and after excluding invalid responses, 247 were included in the analysis. Logistic regression analysis revealed that living within 5 km of the GNPP (odds ratio [OR] = 4.48, 95% confidence interval [CI]: 2.43-8.24), awareness of preferential implementation of ITB to children (OR = 3.33, 95%CI: 1.78-6.22), and awareness of the prophylaxis booklet published by the local government (OR = 2.53, 95%CI: 1.37-4.68) were independently associated with PDSI for children. The main reasons for not receiving PDSI were "anxiety about the side effects of stable iodine" (40.2%), "distrust of the effectiveness of SI" (23.5%), "complicated procedures for receiving stable iodine" (15.7%) and "missed the date for receiving stable iodine" (8.8%). In the case of ITB implementation during a nuclear emergency, it is necessary to clarify the risk perceptions of guardians and adapt risk communication accordingly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8118537 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250570 | PLOS |
Sci Rep
January 2025
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.
Off-grid water pumping systems (OGWPS) have become an increasingly popular area of research in the search for sustainable energy solutions. This paper presents a finite element method (FEM)-based design and analysis of Brushless-DC (BLDC) and Switched Reluctance Motors (SRM) designed for low-power water pumping applications. Utilizing adaptive finite element analysis (FEA), both motors were designed with identical ratings and design parameters to ensure a fair comparison.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu, 610200, China.
Plutonium-238 (Pu) is a scarce heat-source radioisotope used in nuclear batteries, which is produced by in-reactor irradiation of Americium-241 (Am) or Neptunium-237 (Np). Optimizing the neutron spectrum can improve the production efficiency of Pu, but currently, it is still a lack of knowledge about the optimal neutron spectrum for Pu production. Genetic algorithms and burnup algorithms are combined to identify optimal neutron spectra for Pu production under various irradiation times and flux levels, and build an optimal neutron spectrum database, which answers the questions "What is the optimal neutron spectrum for Pu production?" and "What is the maximum efficiency for Pu production" once and for all.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, P. R. China.
Bacterial biofilms, complex microbial communities encased in a protective extracellular matrix, pose a significant threat to public health due to their inherent antibiotic resistance. This review explores the potential of peptides, particularly antimicrobial peptides (AMPs), as innovative tools to combat biofilm-related infections. AMPs, characterized by their potent antimicrobial activity and tissue permeability, offer a promising approach to overcome the challenges posed by biofilms.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Key Laboratory of Advanced Science and Technology on High Power Microwave, Northwest Institute of Nuclear Technology, Xi'an 710024, China.
The testing and modeling of semiconductor devices are the foundation of circuit design. The issue of high-power device testing urgently needs to be solved as the power level of the devices under test (DUTs) increases. This work proposes advanced measurement methods based on three aspects of "measuring capability, security, and stability" with a focus on the features of high output power, easy self-oscillation in mismatch tests, and safety risk in the measurement system of high-power transistors.
View Article and Find Full Text PDFInnovation (Camb)
January 2025
Regional Climate Group, Department of Earth Sciences, University of Gothenburg, 40530 Gothenburg, Sweden.
Near-surface wind speed (NSWS), a determinant of wind energy, is influenced by both natural and anthropogenic factors. However, the specific impacts of volcanic eruptions on NSWS, remain unexplored. Our simulations spanning the last millennium reveal a consistent 2-year global NSWS reduction following 10 major historical eruptions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!