Background: In emergency departments (EDs), the staff continually face stressful situations requiring staff to adopt various coping strategies.
Aims: The study aimed to assess work-related stress in ED during the COVID-19 outbreak.
Method: The study was a monocentric investigation based on a questionnaire survey that elicits general information and uses the Karasek model to analyse the data.
Findings: A total of 117 forms were collected for analysis. The score for decision latitude (or autonomy and skills at work) was 70 (IQR: 64-74) and the score for psychological demand was 25 (IQR: 23-27). The score for social support by the management team was 11 (IQR: 9-12) and the score for social support by colleagues 12 (IQR: 10-12). Of the total number of respondents, job strain was assessed as affecting 24.8%.
Conclusion: The study shows high levels of stress among the ED workforce. The findings indicate that it is imperative to develop simple management tools that are capable of measuring the internal causes of stress in order to develop an adapted wellness programme in ED.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.12968/bjon.2021.30.9.540 | DOI Listing |
Free Radic Biol Med
January 2025
University of Colorado, Anschutz Medical Campus School of Medicine| Translational research laboratory of Red Blood Cell Diseases and Hypoxia related illnesses| Cardiovascular Pulmonary Research (CVP) group, Pediatrics. Electronic address:
Lung tissue from human patients and murine models of sickle cell disease pulmonary hypertension (SCD-PH) show perivascular regions with excessive iron accumulation. The iron accumulation arises from chronic hemolysis and extravasation of hemoglobin (Hb) into the lung adventitial spaces, where it is linked to nitric oxide depletion, oxidative stress, inflammation, and tissue hypoxia, which collectively drive SCD-PH. Here, we tested the hypothesis that intrapulmonary delivery of hemopexin (Hpx) to the deep lung is effective at scavenging heme-iron and attenuating the progression of SCD-PH.
View Article and Find Full Text PDFEnviron Res
January 2025
Man-Technology-Environment Research Center (MTM), Örebro University, Örebro SE-701 82, Sweden.
As the volume of plastic waste from electrical and electronic equipment (WEEE) continues to rise, a significant portion is disposed of in the environment, with only a small fraction being recycled. Both disposal and recycling pose unknown health risks that require immediate attention. Existing knowledge of WEEE plastic toxicity is limited and mostly relies on epidemiological data and association studies, with few insights into the underlying toxicity mechanisms.
View Article and Find Full Text PDFPharmacol Ther
January 2025
Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran. Electronic address:
While benzodiazepines have been a mainstay of the pharmacotherapy of anxiety disorders, their short-term efficacy and risk of abuse have driven the exploration of alternative treatment approaches. The endocannabinoid (eCB) system has emerged as a key modulator of anxiety-related processes, with evidence suggesting dynamic interactions between the eCB system and the GABAergic system, the primary target of benzodiazepines. According to the existing literature, the activation of the cannabinoid receptors has been shown to exert anxiolytic effects, while their blockade or genetic deletion results in heightened anxiety-like responses.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Department of Oncology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, PR China. Electronic address:
In recent years, the chiral biological effects of nanomedicines have garnered significant interest. Research has focused on understanding how material chirality affects cellular transcription and metabolism. Stress granules, which are membraneless organelles formed through liquid-liquid phase separation of G3BP1 proteins and related compartments, have been extensively studied and are closely associated with cellular damage repair and metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!