The key feature of nonlocal kinetic energy functionals is their ability to reduce to the Thomas-Fermi functional in the regions of high density and to the von Weizsäcker functional in the region of low-density/high reduced density gradient. This behavior is crucial when these functionals are employed in subsystem DFT simulations to approximate the nonadditive kinetic energy. We propose a GGA nonadditive kinetic energy functional which mimics the good behavior of nonlocal functionals, retaining the computational complexity of typical semilocal functionals. Crucially, this functional depends on the inter-subsystem density overlap. The new functional reproduces Kohn-Sham DFT and benchmark CCSD(T) interaction energies of weakly interacting dimers in the S22-5 and S66 test sets with a mean absolute deviation well below 1 kcal/mol.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.1c00283DOI Listing

Publication Analysis

Top Keywords

kinetic energy
12
subsystem dft
8
nonlocal functionals
8
nonadditive kinetic
8
functionals
5
functional
5
gga-level subsystem
4
dft achieves
4
achieves sub-kcal/mol
4
sub-kcal/mol accuracy
4

Similar Publications

Data-Driven Improvement of Local Hybrid Functionals: Neural-Network-Based Local Mixing Functions and Power-Series Correlation Functionals.

J Chem Theory Comput

January 2025

Technische Universitát Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, Berlin D-10623, Germany.

Local hybrid functionals (LHs) use a real-space position-dependent admixture of exact exchange (EXX), governed by a local mixing function (LMF). The systematic construction of LMFs has been hampered over the years by a lack of exact physical constraints on their valence behavior. Here, we exploit a data-driven approach and train a new type of "n-LMF" as a relatively shallow neural network.

View Article and Find Full Text PDF

Key Interaction Changes Determine the Activation Process of Human Parathyroid Hormone Type 1 Receptor.

J Am Chem Soc

January 2025

Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China.

The parathyroid hormone type 1 receptor (PTH1R) plays a crucial role in modulating various physiological functions and is considered an effective therapeutic target for osteoporosis. However, a lack of detailed molecular and energetic information about PTH1R limits our comprehensive understanding of its activation process. In this study, we performed computational simulations to explore key events in the activation process, such as conformational changes in PTH1R, Gs protein coupling, and the release of guanosine diphosphate (GDP).

View Article and Find Full Text PDF

Electrochemical water splitting is a promising method for the generation of "green hydrogen", a renewable and sustainable energy source. However, the complex, multistep synthesis processes, often involving hazardous or expensive chemicals, limit its broader adoption. Herein, a nitrate (NO) anion-intercalated nickel-iron-cerium mixed-metal (oxy)hydroxide heterostructure electrocatalyst is fabricated on nickel foam (NiFeCeOH@NF) via a simple electrodeposition method followed by cyclic voltammetry activation to enhance its surface properties.

View Article and Find Full Text PDF

Self-cleaning applications based on bionic surface designs requires an in-depth understanding of unique and complex wetting and evaporation processes of sessile droplets on natural biosurfaces. To this end, hydrophobic bamboo and Kalanchoe blossfeldiana leaves are excellent candidates for self-cleaning applications, but various properties, such as the heat and mass transfer processes during evaporation, remain unknown. Here, the dynamics of contact angle, radius, and heat and mass transfer during evaporation of sessile droplets on bamboo and Kalanchoe blossfeldiana leaves with roughness in the range 2.

View Article and Find Full Text PDF

Compared to aziridines, azaphosphiridines, which formally result from the replacement of a carbon atom by phosphorus, have been much less studied. In this work, accurate values for one of the most prominent properties, the ring strain energy (RSE), have been theoretically examined for a wide range of azaphosphiridine derivatives. Strongly related aspects of interest for developing the use of azaphosphiridines in heteroatom and polymer chemistry are ring opening reactions and polymerisations, the latter facilitated by their significantly high RSE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!