Degradation-triggered release from biodegradable metallic surfaces.

J Biomed Mater Res B Appl Biomater

Advanced Facilities Engineering Technology Research Cluster, Facilities Maintenance Engineering Section, Malaysian Institute of Industrial Technology, Universiti Kuala Lumpur, Johor Bahru, Johor, Malaysia.

Published: December 2021

This work is dedicated to the investigation of drug-release control by a direct effect of degradation from biodegradable metallic surfaces. Degradation behaviors characterized by surface morphology, immersion, and electrochemical techniques demonstrated that curcumin-coated zinc (c-Zn) had a higher degradation rate compared to curcumin-coated Fe (c-Fe). High anodic dissolution rate due to the higher degradation rate and widely extended groove-like degradation structure of c-Zn propelled a higher curcumin release. On the other hand, a slower curcumin release rate shown by c-Fe scaffolds is ascribed to its lower anodic dissolution and to its pitting degradation regime with relatively smaller pits. These findings illuminate the remarkable advantage of different degradation behaviors of degradable metallic surfaces in directly controlling the drug release without the need for external electrical stimulus.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.34866DOI Listing

Publication Analysis

Top Keywords

metallic surfaces
12
biodegradable metallic
8
degradation behaviors
8
higher degradation
8
degradation rate
8
anodic dissolution
8
curcumin release
8
degradation
7
degradation-triggered release
4
release biodegradable
4

Similar Publications

Shear bond strength and ARI scores of metal brackets to glazed glass ceramics and zirconia: an in vitro study investigating surface treatment protocols.

BMC Oral Health

December 2024

Faculty of Dentistry, Innovative Dental Materials and Interfaces Research Unit (URB2i), UR 4462, Paris Cité University, 1 rue Maurice Arnoux, Montrouge, 92120, France.

Objective: To evaluate the shear bond strength (SBS) and adhesive remnant index (ARI) scores of metal brackets to glazed lithium disilicate reinforced glass-ceramics and zirconia according to various surface treatment protocols.

Methods: A total of 240 lithium disilicate ceramic (LD) and 240 zirconia (Zr) blocks were randomly divided according to sandblasting, hydrofluoric acid (HF) etching, universal primer use, and the adhesive system applied. A maxillary canine metal bracket was bonded to each sample with resin cement (Transbond XT, TXT).

View Article and Find Full Text PDF

Statement Of Problem: Excess cement in implant-supported restorations can lead to peri-implant diseases, and its removal remains a clinical challenge. The optimum method of minimizing excess cement is unclear.

Purpose: The purpose of this in vitro study was to compare 3 cementation techniques and 3 cement types and measure excess cement.

View Article and Find Full Text PDF

High-temperature calcination modified red clay as an efficient adsorbent for phosphate removal from water.

Environ Res

December 2024

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil& Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.

To develop an efficient and cost-effective adsorbent for phosphate removal from water bodies, this study utilized natural red clay (RC) as a carrier. The modified red clay (MRC) was prepared through three methods: acid modification, high-temperature calcination, and metal loading. The preparation conditions were optimized, and the adsorption effects on phosphate were compared across these different modifications.

View Article and Find Full Text PDF

Heavy metals released from metallic sulfidic tailings pose significant environmental threats by contaminating surface and groundwater in mining areas. Sustainable rehabilitation methods are essential to remove or stabilize these metals, improving the quality of acid mine drainage and minimizing pollution. This study examines the adsorption capacity of zinc ions (Zn) by different iron-silicate mineral groups under natural weathering and bacteria-regulated weathered conditions.

View Article and Find Full Text PDF

Enhanced coagulation of Microcystis aeruginosa using titanium xerogel coagulant.

Chemosphere

December 2024

Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake, Ministry of Education, Hubei University of Technology, Wuhan 430068, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan 430068, China. Electronic address:

Cyanobacterial blooms are prevalent globally and present a significant threat to water security. Titanium salt coagulants have garnered considerable attention due to their superior coagulation properties and the absence of metal residue risks. This paper explored the influencing factors in the coagulation process of titanium xerogel coagulant (TXC), the alterations in cell activity during floc storage, and the release of cyanobacterial organic matters, thereby determining the application scope of TXC for cyanobacterial water treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!