AI Article Synopsis

  • The tree of life serves as a biological map for understanding evolution and the characteristics of life on Earth, particularly focusing on flowering plants (angiosperms) which have many data gaps despite their importance.
  • The article presents a phylogenomic platform utilizing high-throughput sequencing tools and 353 nuclear genes to deepen the exploration of the angiosperm tree of life, with methods, data release, and an open data portal called the Kew Tree of Life Explorer.
  • The first data release includes the largest nuclear phylogenomic dataset for angiosperms to date, covering a vast number of samples and families, and provides a "first pass" tree that supports current taxonomy while questioning previously established relationships among plant orders.

Article Abstract

The tree of life is the fundamental biological roadmap for navigating the evolution and properties of life on Earth, and yet remains largely unknown. Even angiosperms (flowering plants) are fraught with data gaps, despite their critical role in sustaining terrestrial life. Today, high-throughput sequencing promises to significantly deepen our understanding of evolutionary relationships. Here, we describe a comprehensive phylogenomic platform for exploring the angiosperm tree of life, comprising a set of open tools and data based on the 353 nuclear genes targeted by the universal Angiosperms353 sequence capture probes. The primary goals of this article are to (i) document our methods, (ii) describe our first data release, and (iii) present a novel open data portal, the Kew Tree of Life Explorer (https://treeoflife.kew.org). We aim to generate novel target sequence capture data for all genera of flowering plants, exploiting natural history collections such as herbarium specimens, and augment it with mined public data. Our first data release, described here, is the most extensive nuclear phylogenomic data set for angiosperms to date, comprising 3099 samples validated by DNA barcode and phylogenetic tests, representing all 64 orders, 404 families (96$\%$) and 2333 genera (17$\%$). A "first pass" angiosperm tree of life was inferred from the data, which totaled 824,878 sequences, 489,086,049 base pairs, and 532,260 alignment columns, for interactive presentation in the Kew Tree of Life Explorer. This species tree was generated using methods that were rigorous, yet tractable at our scale of operation. Despite limitations pertaining to taxon and gene sampling, gene recovery, models of sequence evolution and paralogy, the tree strongly supports existing taxonomy, while challenging numerous hypothesized relationships among orders and placing many genera for the first time. The validated data set, species tree and all intermediates are openly accessible via the Kew Tree of Life Explorer and will be updated as further data become available. This major milestone toward a complete tree of life for all flowering plant species opens doors to a highly integrated future for angiosperm phylogenomics through the systematic sequencing of standardized nuclear markers. Our approach has the potential to serve as a much-needed bridge between the growing movement to sequence the genomes of all life on Earth and the vast phylogenomic potential of the world's natural history collections. [Angiosperms; Angiosperms353; genomics; herbariomics; museomics; nuclear phylogenomics; open access; target sequence capture; tree of life.].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8830076PMC
http://dx.doi.org/10.1093/sysbio/syab035DOI Listing

Publication Analysis

Top Keywords

tree life
32
tree
12
angiosperm tree
12
sequence capture
12
kew tree
12
life explorer
12
life
11
data
11
comprehensive phylogenomic
8
phylogenomic platform
8

Similar Publications

Lithocarpus litseifolius is rich in the chalcones phloridzin and trilobatin, the biosynthesis pathways of which have not been fully demonstrated. Chalcone synthase(CHS) is the first key rate-limiting enzyme in the biosynthesis of flavonoids in plants. To explore the functions of CHS gene family in chalcone synthesis of L.

View Article and Find Full Text PDF

Impact of tourism on bird behavior: a comparison of flight initiation distance between birds in areas of tourist and non-tourist attraction.

Behav Processes

January 2025

Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China. Electronic address:

Tourism, as an important manifestation of urbanization, is becoming increasingly popular. Although it offers numerous advantages for the local community, it also exerts a multifaceted impact on local wildlife. Previous research on the effects of tourism has mainly focused on protected areas or tourist spots, rarely considering the surrounding non-tourist attraction areas.

View Article and Find Full Text PDF

Phenanthrene toxicity during early development of the neotropical tree frog Dendropsophus branneri.

Aquat Toxicol

January 2025

Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, S/N - Cidade Universitária, Recife 50670-420, Brazil; Aquatic Ecotoxicology Laboratory, Centro de Biociências, Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, S/N - Cidade Universitária, Recife 50670-420, Brazil. Electronic address:

Phenanthrene is considered a priority polycyclic aromatic hydrocarbon due to its ubiquitous presence in aquatic and terrestrial environments and its toxic potential. Tadpoles are sensitive ecotoxicological models that provide important information regarding effects of contaminants in amphibian species. The goal of the present study was to generate information regarding the acute and chronic toxicity of phenanthrene to the neotropical tree frog Dendropsophus branneri early life stages.

View Article and Find Full Text PDF

Floodplain forests drive fruit-eating fish diversity at the Amazon Basin-scale.

Proc Natl Acad Sci U S A

January 2025

Centre de Recherche sur la Biodiversité et l'Environnement, Université de Toulouse, Institut de Recherche pour le Développement, Institut National Polytechnique de Toulouse, Université Toulouse 3 - Paul Sabatier, Toulouse F-31062, France.

Unlike most rivers globally, nearly all lowland Amazonian rivers have unregulated flow, supporting seasonally flooded floodplain forests. Floodplain forests harbor a unique tree species assemblage adapted to flooding and specialized fauna, including fruit-eating fish that migrate seasonally into floodplains, favoring expansive floodplain areas. Frugivorous fish are forest-dependent fauna critical to forest regeneration via seed dispersal and support commercial and artisanal fisheries.

View Article and Find Full Text PDF

MaGA20ox2f, an OsSD1 homolog, regulates flowering time and fruit yield in banana.

Mol Breed

January 2025

Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China.

Unlabelled: Previous studies illustrated that two banana GA20 oxidase2 (MaGA20ox2) genes, and , are implicated in controlling banana growth and development; however, the biological function of each gene remains unknown. Ma04g15900 protein (termed MaGA20ox2f in this article) is the closest homolog to the Rice SD1 (encoded by 'green revolution gene', ) in the banana genome. The expression of is confined to leaves, peduncles, fruit peels, and pulp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!