Near-infrared wavelength observations are crucial for understanding numerous fields of astrophysics, such as supernova cosmology and positronium annihilation detection. However, current ground-based observations suffer from an enormous background due to OH emission in the upper atmosphere. One promising way to solve this problem is to use ring-resonator filters to suppress OH emission lines. In this work, we discuss our optimization of ring-resonator filter performance from five perspectives: resonance wavelength matching, polarization-independent operation, low insertion loss, low-loss coupling to astronomical instruments, and broadband operation. In the end, we discuss next steps needed for reliable supernova and positronium observations, thus providing a roadmap for future advances in near-infrared astronomy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.421383 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!