Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The detection of atmospheric backscattering signals using fluorescence from an iodine blocking filter in high-spectral-resolution lidar was studied experimentally. The efficiency of detection is determined by the fluorescence quantum efficiency and the optical efficiency of collecting fluorescence. The quantum efficiency was estimated to be ${\sim}{0.08}$ from the measured fluorescence lifetime of 0.18 µs and the radiative lifetime of 2.3 µs estimated from the literature. The efficiency of collecting fluorescence was low (${\sim}{0.008}$) in the current system. Measurements of atmospheric backscattering were performed, and it was confirmed that the method actually detected the Mie scattering component of the signal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.421864 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!