We propose a new method for band structure calculation of photonic crystals. It can treat arbitrarily frequency-dependent, lossy or lossless materials. The band structure problem is first formulated as the eigenvalue problem of an operator function. Finite elements are then used for discretization. Finally, the spectral indicator method is employed to compute the eigenvalues. Numerical examples in both TE and TM cases are presented to show the effectiveness. There exist very few examples in literature for the TM case, and the examples in this paper can serve as benchmarks.

Download full-text PDF

Source
http://dx.doi.org/10.1364/JOSAA.412235DOI Listing

Publication Analysis

Top Keywords

band structure
12
structure calculation
8
calculation photonic
8
photonic crystals
8
crystals frequency-dependent
4
frequency-dependent permittivities
4
permittivities propose
4
propose method
4
method band
4
crystals treat
4

Similar Publications

Catalytic-assisted remediation and phytotoxicity evaluations of organic pollutants in the presence of metal-doped BiO-based NPs catalyst.

J Environ Manage

January 2025

Universidad Autónoma de Nuevo León, Facultad de Agronomía, Laboratorio de Ciencias Naturales, General Escobedo, 66050, Nuevo Leon, Mexico. Electronic address:

The chemical co-precipitation method was used to synthesize a variety of pure BiO and substituted BiCoCdO NPs (x = 0.0-0.8) and doping influences were evaluated based on the optical, photocatalytic, morphological, and structural characteristics.

View Article and Find Full Text PDF

TiSquantum dots composite carbon nanotubes aerogel with electromagnetic interference shielding effect.

Nanotechnology

January 2025

Institute of Nonlinear Optics, College of Science, JiuJiang University, Jiangxi 334000, People's Republic of China.

Titanium disulfide quantum dots (TiSQDs) has garnered significant research interest due to its distinctive electronic and optical properties. However, the effectiveness of TiSQDs in electromagnetic interference (EMI) shielding is influenced by various factors, including their size, morphology, monodispersity, tunable bandgap, Stokes shift and interfacial effects. In this study, we propose a systematic approach for the synthesis of TiSQDs with small size (3.

View Article and Find Full Text PDF

Vertical Quantum Confinement in Bulk MoS.

ACS Nano

January 2025

Dto. de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain.

We experimentally observe quantum confinement states in bulk MoS by using angle-resolved photoemission spectroscopy (ARPES). The band structure at the Γ̅ point reveals quantum well states (QWSs) linked to vertical quantum confinement of the electrons, confirmed by the absence of dispersion in and a strong intensity modulation with the photon energy. Notably, the binding energy dependence of the QWSs versus does not follow the quadratic dependence of a two-dimensional electron gas.

View Article and Find Full Text PDF

In this study, we investigate a novel hybrid borocarbonitride (bpn-BCN) 2D material inspired by recent advances in carbon biphenylene synthesis, using first-principles calculations and semi-classical Boltzmann transport theory. Our analysis confirms the structural stability of bpn-BCN through formation energy, elastic coefficients, phonon dispersion, and molecular dynamics simulations at 300 K and 800 K. The material exhibits an indirect band gap of 0.

View Article and Find Full Text PDF

Strain-Reduced Inversion Symmetry in Ultrathin SnPSe Crystals for Giant Bulk Piezophotovoltaic Generation.

ACS Nano

January 2025

Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.

With the potential to surpass the Shockley-Queisser (S-Q) limitation for solar energy conversion, the bulk photovoltaic (BPV) effect, which is induced by the broken inversion symmetry of the lattice, presents prospects for future light-harvesting technologies. However, the development of BPV is largely limited by the low solar spectrum conversion efficiency of existing noncentrosymmetric materials with wide band gaps. This study reports that the strain-induced reduction of inversion symmetry can enhance the second-order nonlinear susceptibility (χ) of SnPSe crystals by an order of magnitude, which contributes to an extremely high value of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!