Achieving high classification accuracy on trace chemical residues in active spectroscopic sensing is challenging due to the limited amount of training data available to the classifier. Such classifiers often rely on physics-based models for generating training data though these models are not always accurate when compared to measured data. To overcome this challenge, we developed a physics-guided neural network (PGNN) for predicting chemical reflectance for a set of parameterized inputs that is more accurate than the state-of-the-art physics-based signature model for chemical residues. After training the PGNN, we use it to generate a library of predicted spectra for training a classifier. We compare the classification accuracy when using this PGNN library versus a library generated by the physics-based model. Using the PGNN, the average classification accuracy increases from 0.623 to 0.813 on real chemical reflectance data, including data from chemicals not included in the PGNN training set.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.420688DOI Listing

Publication Analysis

Top Keywords

classification accuracy
12
physics-guided neural
8
neural network
8
predicting chemical
8
chemical residues
8
training data
8
chemical reflectance
8
chemical
5
training
5
data
5

Similar Publications

This study addresses the significant issue of rapid land use and land cover (LULC) changes in Lahore District, which is critical for supporting ecological management and sustainable land-use planning. Understanding these changes is crucial for mitigating adverse environmental impacts and promoting sustainable development. The main goal is to evaluate historical LULC changes from 1994 to 2024 and forecast future trends for 2034 and 2044 utilizing the CA-Markov hybrid model combined with GIS methodologies.

View Article and Find Full Text PDF

Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.

View Article and Find Full Text PDF

We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.

View Article and Find Full Text PDF

An automatic cervical cell classification model based on improved DenseNet121.

Sci Rep

January 2025

Department of Biomedical Engineering, School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China.

The cervical cell classification technique can determine the degree of cellular abnormality and pathological condition, which can help doctors to detect the risk of cervical cancer at an early stage and improve the cure and survival rates of cervical cancer patients. Addressing the issue of low accuracy in cervical cell classification, a deep convolutional neural network A2SDNet121 is proposed. A2SDNet121 takes DenseNet121 as the backbone network.

View Article and Find Full Text PDF

Exploring the potential of advanced artificial intelligence technology in predicting microsatellite instability (MSI) and Ki-67 expression of endometrial cancer (EC) is highly significant. This study aimed to develop a novel hybrid radiomics approach integrating multiparametric magnetic resonance imaging (MRI), deep learning, and multichannel image analysis for predicting MSI and Ki-67 status. A retrospective study included 156 EC patients who were subsequently categorized into MSI and Ki-67 groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!