It is important to improve the registration precision and speed in the process of registration. In order to solve this problem, we proposed a robust point cloud registration method based on deep learning, called PDC-Net, using a principal component analysis based adjustment network that quickly adjusts the initial position between two slices of the point cloud, then using an iterative neural network based on the inverse compositional algorithm to complete the final registration transformation. We compare it on the ModelNet40 dataset with iterative closest point, which is the traditional point cloud registration method, and the learning-based methods including PointNet-LK and deep closest point. The experimental results show that the registration error is not worse with the increase of the initial phase between point clouds, avoiding the algorithm falling into the local optimal solution and enhancing the robustness of registration.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.418304DOI Listing

Publication Analysis

Top Keywords

point cloud
16
cloud registration
12
robust point
8
registration
8
neural network
8
registration method
8
closest point
8
point
7
pdc-net robust
4
cloud
4

Similar Publications

Microscopic augmented reality calibration with contactless line-structured light registration for surgical navigation.

Med Biol Eng Comput

January 2025

Mechanical Engineering Department, Tianjin University, No. 135, Yaguan Road, Haihe Education Park, Jinnan District, Tianjin City, 300350, China.

The use of AR technology in image-guided neurosurgery enables visualization of lesions that are concealed deep within the brain. Accurate AR registration is required to precisely match virtual lesions with anatomical structures displayed under a microscope. The purpose of this work was to develop a real-time augmented surgical navigation system using contactless line-structured light registration, microscope calibration, and visible optical tracking.

View Article and Find Full Text PDF

In response to the demand for advanced tools in environmental monitoring and policy formulation, this work leverages modern software and big data technologies to enhance novel road transport emissions research. This is achieved by making data and analysis tools more widely available and customisable so users can tailor outputs to their requirements. Through the novel combination of vehicle emissions remote sensing and cloud computing methodologies, these developments aim to reduce the barriers to understanding real-driving emissions (RDE) across urban environments.

View Article and Find Full Text PDF

With the rapid increase in end-of-life smartphones, enhancing the automation and intelligence of their recycling processes has become an urgent challenge. At present, the disassembly of discarded smartphones predominantly relies on manual labor, which is not only inefficient but also associated with environmental pollution and high labor intensity. In the context of end-of-life smartphone recycling, complex situations such as stacking and occlusion are commonly encountered.

View Article and Find Full Text PDF

Formation of water-in-water emulsions and microgels in nonionic surfactant + gelatin aqueous mixtures.

J Colloid Interface Sci

January 2025

Institute of Advanced Chemistry of Catalonia (IQAC), Consejo Superior de Investigaciones Científicas (CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, ISCIII), Jordi Girona, 18-26, 08034 Barcelona, Spain. Electronic address:

Article Synopsis
  • The study proposes that water-in-water (W/W) emulsions can be created by mixing a polymer and a surfactant, leading to phase segregation when the surfactant's cloud temperature is lowered.
  • Experiments involved using an ethoxylated triglyceride surfactant (Kolliphor ELP) with gelatin, where the gelatin reduced the surfactant's cloud temperature, allowing for two distinct aqueous phases to form.
  • The findings reveal that this is the first documented case of W/W emulsions formed with a polymer-surfactant mixture, achieving stability through chemically crosslinked microgels and the incorporation of mucin particles.
View Article and Find Full Text PDF

Accurate 6D object pose estimation is critical for autonomous docking. To address the inefficiencies and inaccuracies associated with maximal cliques-based pose estimation methods, we propose a fast 6D pose estimation algorithm that integrates feature space and space compatibility constraints. The algorithm reduces the graph size by employing Laplacian filtering to resample high-frequency signal nodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!