A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Estimation of behavior of optical turbulence during summer in the surface layer above the Antarctic Plateau using the Polar WRF model. | LitMetric

An optical turbulence ($C_n^2$) was found to be concentrated predominantly in the thin surface layer (SL) above the Antarctic Plateau. We present an estimation of the behavior of the SL $C_n^2$ during the summer time over the entire Antarctic Plateau, using the polar-optimized version of the Weather Research and Forecast model (Polar WRF) coupled with the Monin-Obukhov similarity theory. The results show that the $C_n^2$ is affected by the sunlight direction and terrain height. The $C_n^2$ minimum occurs sometime around the morning and evening transitions, when the condition of neutral stability is achieved inside the SL. These $C_n^2$ minima may be attributed to the relatively weaker thermal convection resulting from a small temperature difference. The simulated $C_n^2$ data coincide well with the measurements taken at the Antarctic Taishan Station using a micro-thermometer and sonic anemometer; the data are also in agreement with the seeing values obtained from a differential image motion monitor. In addition, the Polar WRF captured the $C_n^2$ minimum more precisely compared to the standard WRF.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.419473DOI Listing

Publication Analysis

Top Keywords

antarctic plateau
12
polar wrf
12
estimation behavior
8
optical turbulence
8
surface layer
8
layer antarctic
8
$c_n^2$ minimum
8
$c_n^2$
7
behavior optical
4
turbulence summer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!