A major hindrance in utilizing uranyl(VI) luminescence as a standard analytical tool, for example, in environmental monitoring or nuclear industries, is quenching by other ions such as halide ions, which are present in many relevant matrices of uranyl(VI) speciation. Here, we demonstrate through a combination of time-resolved laser-induced fluorescence spectroscopy, transient absorption spectroscopy, and quantum chemistry that coordinating solvent molecules play a crucial role in U(VI) halide luminescence quenching. We show that our previously suggested quenching mechanism based on an internal redox reaction of the 1:2-uranyl-halide-complex holds also true for bromide-induced quenching of uranyl(VI). By adopting specific organic solvents, we were able to suppress the separation of the oxidized halide ligand X and the formed uranyl(V) into fully solvated ions, thereby "reigniting" U(VI) luminescence. Time-dependent density functional theory calculations show that quenching occurs through the outer-sphere complex of U(VI) and halide in water, while the ligand-to-metal charge transfer is strongly reduced in acetonitrile.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.1c02487 | DOI Listing |
Adv Mater
December 2024
Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
Singlet exciton fission has the potential to increase the efficiency of crystalline silicon solar cells beyond the conventional single junction limit. Perhaps the largest obstacle to achieving this enhancement is uncertainty about energy coupling mechanisms at the interfaces between silicon and exciton fission materials such as tetracene. Here, the previously reported silicon-hafnium oxynitride-tetracene structure is studied and a combination of magnetic-field-dependent silicon photoluminescence measurements and density functional theory calculations is used to probe the influence of the interlayer composition on the triplet transfer process across the hafnium oxynitride interlayer.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Chemistry and Chemical Engineering, Guangxi Minzu University. Nanning 530006 China.
At present, the mechanism difference between tetragonal BiVO (t-BiVO) and monoclinic BiVO (m-BiVO) coupled peroxymonosulfate (PMS) to realize photocatalysis is still unclear. In this study, m-BiVO and t-BiVO were obtained by adjusting the bismuth-vanadium ratio in the precursor solution (Bi:V=3:1; 1:1; 1:2 and 1:3). The results of photocatalytic experiments showed that both t-BiVO and m-BiVO had certain activation effects on PMS, and the prepared monoclinic B1V2 has the strongest photocatalytic performance.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, F-69100 Villeurbanne, France. Electronic address:
The immobilization of proteins onto clay surfaces has proven beneficial for pharmaceutical and environmental applications. This study examines the adsorption of sodium caseinate (Cas), an amphiphilic protein widely used in pharmaceutical formulations, onto sodium montmorillonite (Mt). Adsorption isotherms and kinetics were examined at two pHs, above and below Cas isoelectric point (IEP).
View Article and Find Full Text PDFFood Chem
December 2024
State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China. Electronic address:
Talanta
December 2024
State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China. Electronic address:
The excessive presence of the metal ions Cu and Fe in the environment poses a serious threat to ecosystems and human health, so timely and accurate detection of them has become essential and urgent. In this paper, a novel hydrogel-based fluorescent sensor, named ME-IPA@SA-TbZn, was fabricated facilely through an in-situ cross-linking modification method and was used for the detection of Cu and Fe in water bodies. The ME-IPA@SA-TbZn is essentially a hybrid hydrogel bead that exhibits vibrant fluorescence, employing Tb and Zn functionalized hydrogen-bonded organic frameworks (HOFs) as the fluorescence functional core and sodium alginate (SA) as the hydrogel matrix.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!