Paclitaxel (PTX) is a first-line chemotherapeutic drug for breast cancer, but PTX resistance often occurs in metastatic breast cancer. In addition, due to the poor targeting of chemotherapeutic drugs and the presence of the blood-brain barrier (BBB), it is hard to effectively treat brain metastatic breast cancer using paclitaxel. Thus, it is urgent to develop an effective drug delivery system for the treatment of brain metastatic breast cancer. The current study found that gene, an epithelial-mesenchymal transition-associated gene, was overexpressed in brain metastatic breast cancer (231-BR) cells and was associated with the PTX resistance of 231-BR cells. Knockdown of by small interference RNA (siRNA) in 231-BR cells could effectively increase the sensitivity of brain metastatic breast cancer cells to paclitaxel. Then, a liposome-based drug delivery system was developed for PTX delivery across BBB, enhancing PTX sensitivity and brain metastases targeting via BRBP1 peptide modification. The results showed that BRBP1-modified liposomes could effectively cross the BBB, specifically accumulate in brain metastases, and effectively interfere gene expression and , and thus they enhanced proliferation inhibition, cell cycle arrest, and apoptosis induction, thereby inhibiting the formation and growth of brain metastases. In summary, our results indicated that BRBP1-modified and PTX- and TWF1 siRNA-loaded liposomes have the potential for the treatment of brain metastatic breast cancer, which lays the foundation for the development of a new targeted drug delivery system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c02822 | DOI Listing |
Anticancer Agents Med Chem
January 2025
Department of Pharmaceutical Sciences, Lucknow University, Lucknow, UP, India.
In women globally, breast cancer ranks as the second most frequent cause of cancer-related deaths, making up about 25% of female cancer cases, which is pretty standard in affluent countries. Breast cancer is divided into subtypes based on aggressive, genetic and stage. The precise cause of the problem is still unknown.
View Article and Find Full Text PDFCurr Protein Pept Sci
January 2025
Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi-75270, Pakistan.
Background: Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer with a high recurrence rate. A new therapeutic intervention is urgently needed to combat this lethal subtype. The identification of biomarkers is also crucial for improving outcomes in TNBC.
View Article and Find Full Text PDFMol Pharm
January 2025
School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China.
Photodynamic therapy (PDT) is increasingly regarded as an attractive approach for cancer treatment due to its advantages of low invasiveness, minimal side effects, and high efficiency. Here, two novel Ru(II) complexes , were designed and synthesized by coordinating phenanthroline and biquinoline ligands with Ru(II) center, and their chemo-photodynamic therapy and immunotherapy were explored. Both and exhibited significant phototoxicity against A549 and 4T1 tumor cells type-I/-II PDT.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Department of Surgery, Sylvester Comprehensive Cancer, University of Miami Miller School of Medicine, Miami, FL 33136, USA. Electronic address:
Neutral lipids affect the immunosuppressive function of myeloid-derived suppressor cells (MDSCs). Here, we present a protocol for measuring neutral lipids in MDSCs using BODIPY from mouse mammary tumor derived from triple-negative breast cancer cells, 4T1, which is applicable to other mammary tumors of interest. We describe steps for 4T1 cell culture, single-cell isolation from tumors, staining of cells with antibodies and BODIPY, and flow cytometry.
View Article and Find Full Text PDFCancer Commun (Lond)
January 2025
Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Centre, Shanghai, P. R. China.
Background: Hormone receptor-positive (HR+)/humaal growth factor receptor 2-negative (HER2-) breast cancer, the most common breast cancer type, has variable prognosis and high recurrence risk. Neoadjuvant therapy is recommended for median-high risk HR+/HER2- patients. This phase II, single-arm, prospective study aimed to explore appropriate neoadjuvant treatment strategies for HR+/HER2- breast cancer patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!