Synergistic Ir/Cu Catalysis for Asymmetric Allylic Alkylation of Oxindoles: Enantio- and Diastereoselective Construction of Quaternary and Tertiary Stereocenters.

Chemistry

Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.

Published: July 2021

3,3-Disubstituted oxindoles bearing quaternary and tertiary stereogenic centers are privileged structural motifs, which widely exist in pharmaceutical and natural products. Herein, a highly regio-, enantio-, and diastereoselective allylic alkylation of 3-alkyl oxindoles through synergistic iridium and copper catalysis is described, which provides a series of 3,3-disubstituted oxindole derivatives containing adjacent quaternary and tertiary stereogenic centers in excellent yields, enantiomeric excess, and diastereomeric ratio (for 30 examples, up to 97 % yield, >99 % ee, and >20 : 1 dr). This method provides exclusive branched selectivity, excellent enantio- and diastereoselectivities, and good functional compatibility. Control experiments suggested that the chiral copper catalyst is required for achieving high reactivities and diastereoselectivities under mild reaction conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202101267DOI Listing

Publication Analysis

Top Keywords

quaternary tertiary
12
allylic alkylation
8
enantio- diastereoselective
8
tertiary stereogenic
8
stereogenic centers
8
synergistic ir/cu
4
ir/cu catalysis
4
catalysis asymmetric
4
asymmetric allylic
4
alkylation oxindoles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!