Nucleotide-binding site (NBS)-leucine-rich repeat (LRR) domain receptor (NLR) proteins play important roles in plant innate immunity by recognizing pathogen effectors. The Toll/interleukin-1 receptor (TIR)-NBS (TN) proteins belong to a subtype of the atypical NLRs, but their function in plant immunity is poorly understood. The well-characterized Arabidopsis thaliana typical coiled-coil (CC)-NBS-LRR (CNL) protein Resistance to Pseudomonas syringae 5 (RPS5) is activated after recognizing the Pseudomonas syringae type III effector AvrPphB. To explore whether the truncated TN proteins function in CNL-mediated immune signaling, we examined the interactions between the Arabidopsis TN proteins and RPS5, and found that TN13 and TN21 interacted with RPS5. However, only TN13, but not TN21, was involved in the resistance to P. syringae pv. tomato (Pto) strain DC3000 carrying avrPphB, encoding the cognate effector recognized by RPS5. Moreover, the regulation of Pto DC3000 avrPphB resistance by TN13 appeared to be specific, as loss of function of TN13 did not compromise resistance to Pto DC3000 hrcC or Pto DC3000 avrRpt2. In addition, we demonstrated that the CC and NBS domains of RPS5 play essential roles in the interaction between TN13 and RPS5. Taken together, our results uncover a direct functional link between TN13 and RPS5, suggesting that TN13 acts as a partner in modulating RPS5-activated immune signaling, which constitutes a previously unknown mechanism for TN-mediated regulation of plant immunity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.15345 | DOI Listing |
Microbiol Res
December 2024
Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain. Electronic address:
Proteins belonging to the RsmA (regulator of secondary metabolism)/CsrA (carbon storage regulator) family are small RNA-binding proteins that play crucial roles post-transcriptionally regulating gene expression in many Gram-negative and some Gram-positive bacteria. Although most of the bacteria studied have a single RsmA/CsrA gene, Pseudomonas syringae pv. tomato (Pto) DC3000 encodes five Rsm proteins: RsmA/CsrA2, RsmC/CsrA1, RsmD/CsrA4, RsmE/CsrA3, and RsmH/CsrA5.
View Article and Find Full Text PDFBiomolecules
August 2024
School of Life Science, Jiangsu Normal University, Xuzhou 221116, China.
Stripe rust, caused by f. sp. (), stands out as one of the most devastating epidemics impacting wheat production worldwide.
View Article and Find Full Text PDFPlant J
October 2024
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
The casein kinase II (CK2) complex consists of catalytic (α) and regulatory (β) subunits and is highly conserved throughout eukaryotes. Plant CK2 plays critical roles in multiple physiological processes; however, its function in plant immunity remains obscure. In this study, we demonstrated that the unique chloroplast-localized CK2 α subunit (CPCK2) is a negative regulator of Arabidopsis thaliana innate immunity.
View Article and Find Full Text PDFFront Plant Sci
July 2024
Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States.
Introduction: As leaves grow, they transition from a low-microbe environment embedded in shoot apex to a more complex one exposed to phyllosphere microbiomes. Such change requires a coordinated reprogramming of cellular responses to biotic stresses. It remains unclear how plants shift from fast growth to robust resistance during organ development.
View Article and Find Full Text PDFPlant J
October 2024
State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
Stomatal movement plays a critical role in plant immunity by limiting the entry of pathogens. OPEN STOMATA 1 (OST1) is a key component that mediates stomatal closure in plants, however, how OST1 functions in response to pathogens is not well understood. RECEPTOR-LIKE KINASE 902 (RLK902) phosphorylates BRASSINOSTEROID-SIGNALING KINASE 1 (BSK1) and positively modulates plant resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!