Swimming in schools has long been hypothesized to allow fish to save energy. Fish must exploit the energy from the wakes of their neighbors for maximum energy savings, a feat that requires them to both synchronize their tail movements and stay in certain positions relative to their neighbors. To maintain position in a school, we know that fish use multiple sensory systems, mainly their visual and flow sensing lateral line system. However, how fish synchronize their swimming movements in a school is still not well understood. Here, we test the hypothesis that this synchronization may depend on functional differences in the two branches of the lateral line sensory system that detects water movements close to the fish's body. The anterior branch, located on the head, encounters largely undisturbed free-stream flow, while the posterior branch, located on the trunk and tail, encounters flow that has been affected strongly by the tail movement. Thus, we hypothesize that the anterior branch may be more important for regulating position within the school, while the posterior branch may be more important for synchronizing tail movements. Our study examines functional differences in the anterior and posterior lateral line in the structure and tail synchronization of fish schools. We used a widely available aquarium fish that schools, the giant danio, Devario equipinnatus. Fish swam in a large circular tank where stereoscopic videos recordings were used to reconstruct the 3D position of each individual within the school and to track tail kinematics to quantify synchronization. For one fish in each school, we ablated using cobalt chloride either the anterior region only, the posterior region only, or the entire lateral line system. We observed that ablating any region of the lateral line system causes fish to swim in a "box" or parallel swimming formation, which was different from the diamond formation observed in normal fish. Ablating only the anterior region did not substantially reduce tail beat synchronization but ablating only the posterior region caused fish to stop synchronizing their tail beats, largely because the tail beat frequency increased dramatically. Thus, the anterior and posterior lateral line system appears to have different behavioral functions in fish. Most importantly, we showed that the posterior lateral line system played a major role in determining tail beat synchrony in schooling fish. Without synchronization, swimming efficiency decreases, which can have an impact on the fitness of the individual fish and group.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8680572 | PMC |
http://dx.doi.org/10.1093/icb/icab071 | DOI Listing |
Traffic Inj Prev
January 2025
China Merchants Chongqing Communications Technology Research & Design Institute Co., Ltd, Chongqing, China.
Objective: This study aimed to analyze the influence of different tunnel reinforcement measures on drivers and to evaluate the associated driving safety risks.
Methods: Experimental data of driving behavior and physiological response were collected under different driving simulation scenarios, such as cover arch erection, corrugated steel, grouting, Steel strips, and fire; an evaluation index system was established based on electrocardiographic (ECG), electrodermal activity(EDA), standard deviation of speed (SDSP), Steering Entropy(SE), standard deviation of lateral position (SDLP) and other indices. The classical domain rank standard of each evaluation index was divided using K-Means algorithm, and a synthetic evaluation matter-element model was established to comprehensively evaluate and analyze the safety risks of each scenario.
PM R
January 2025
Department of Physiatry, Hospital for Special Surgery, New York, New York, USA.
Background: Knee osteoarthritis (OA) and its impairments affect patients' physical and mental health. Radiographically severe knee OA is believed to respond less to conservative treatments including physical therapy (PT) but has not been compared specifically with Patient-Reported Outcomes Measurement Information System (PROMIS)-10.
Objective: To correlate baseline PROMIS-10 physical and mental health scores in patients undergoing PT for knee OA, subgrouped by radiographic severity (Kellgren-Lawrence [KL] grade and number of knee compartments involved).
Debilitating anxiety is pervasive in the modern world. Choices to approach or avoid are common in everyday life and excessive avoidance is a cardinal feature of all anxiety disorders. Here, we used intracranial EEG to define a distributed prefrontal-limbic circuit dynamics supporting approach and avoidance.
View Article and Find Full Text PDFCureus
December 2024
Division of Dental Anesthesiology, Faculty of Dentistry Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, JPN.
Background There are many reports of anatomical and physiological studies on trigeminal ganglion neurons, but few studies have analyzed temporal changes in the excitation of the trigeminal ganglion. This study aimed to establish an experimental system for spatial and temporal imaging analysis of the excitatory dynamics of trigeminal ganglion cells evoked by stimulation of a peripheral branch of the trigeminal nerve. Methods After excision of the trigeminal ganglion with the inferior alveolar nerve (IAN) from Sprague Dawley rats (seven to nine weeks old), 400-µm-thick slices of the trigeminal ganglion with the IAN were prepared.
View Article and Find Full Text PDFCureus
December 2024
Anesthesiology, Jikei University School of Medicine, Tokyo, JPN.
Background Femoral neuropathy is a significant postoperative complication in gynecological surgery that can severely impact patient mobility and quality of life. Among various mechanisms of nerve injury, retractor-induced compression against the pelvic sidewall has been identified as a particularly crucial causative factor. Despite this well-recognized mechanism and its clinical importance, few studies have investigated specific preventive strategies for this iatrogenic complication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!