AI Article Synopsis

Article Abstract

Many members of the enterovirus family are considered as promising oncolytic agents; however, their systemic administration is largely inefficient due to the rapid neutralization of the virus in the circulation and the barrier functions of the endothelium. We aimed to evaluate natural killer cells as carriers for the delivery of oncolytic enteroviruses, which would combine the effects of cell immunotherapy with virotherapy. We tested four strains of nonpathogenic enteroviruses against the glioblastoma cell line panel and evaluated the produced infectious titers. Next, we explored whether these virus strains could be delivered to the tumor by natural killer cell line NK-92, which is being actively evaluated as a clinically acceptable therapeutic. Several strains of enteroviruses demonstrated oncolytic properties, but only coxsackievirus A7 (CVA7) could replicate in NK-92 cells efficiently. We compared the delivery efficiency of CVA7 , using NK-92 cells and direct intravenous administration, and found significant advantages of cell delivery even after a single injection. This suggests that the NK-92 cell line can be utilized as a vehicle for the delivery of the oncolytic strain of CVA7, which would improve the clinical potential of this viral oncolytic for the treatment of glioblastoma multiforme and other forms of cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8065264PMC
http://dx.doi.org/10.1016/j.omto.2021.03.013DOI Listing

Publication Analysis

Top Keywords

delivery oncolytic
12
cell nk-92
8
natural killer
8
nk-92 cells
8
oncolytic
6
cell
6
nk-92
5
efficient delivery
4
oncolytic enterovirus
4
enterovirus carrier
4

Similar Publications

Gene Therapy for Glioblastoma Multiforme.

Viruses

January 2025

Surgical Neurology Branch, NINDS, NIH 10 Center Drive, Bethesda, MD 20892, USA.

Glioblastoma multiforme (GBM) is a devastating, aggressive primary brain tumor with poor patient outcomes and a five-year survival of less than 10%. Significant limitations to effective GBM treatment include poor drug delivery across the blood-brain barrier, drug resistance, and complex genetic tumor alterations. Gene therapy uses a mechanism different from other GBM therapies to reduce tumor growth and enhance antitumor immunity.

View Article and Find Full Text PDF

Vesicular Stomatitis Virus (VSV) has emerged as a promising candidate for various clinical applications, including vaccine development, virus pseudotyping, and gene delivery. Its broad host range, ease of propagation, and lack of pre-existing immunity in humans make it ideal for therapeutic use. VSV's potential as an oncolytic virus has garnered attention; however, resistance to VSV-mediated oncolysis has been observed in some cell lines and tumor types, limiting its effectiveness.

View Article and Find Full Text PDF

Intraocular malignant tumors are rare; however, they can cause serious life-threatening complications. Uveal melanoma (UM) and retinoblastoma (RB) are the most common intraocular tumors in adults and children, respectively, and come with a great disease burden. For many years, several different treatment modalities for UM and RB have been proposed, with chemotherapy for RB cases and plaque radiation therapy for localized UM as first-line treatment options.

View Article and Find Full Text PDF

Fewer than 10 % of children with diffuse midline glioma (DMG) survive 2 years from diagnosis. Radiation therapy remains the cornerstone of treatment and there are no medicinal products with regulatory approval. Although the biology of DMG is better characterized, this has not yet translated into effective treatments.

View Article and Find Full Text PDF

A novel oncolytic Vaccinia virus armed with IL-12 augments antitumor immune responses leading to durable regression in murine models of lung cancer.

Front Immunol

January 2025

Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.

Oncolytic vaccinia viruses (VVs) are potent stimulators of the immune system and induce immune-mediated tumor clearance and long-term surveillance against tumor recurrence. As such they are ideal treatment modalities for solid tumors including lung cancer. Here, we investigated the use of VVL-m12, a next-generation, genetically modified, interleukin-12 (IL-12)-armed VV, as a new therapeutic strategy to treat murine models of lung cancer and as a mechanism of increasing lung cancer sensitivity to antibody against programmed cell death protein 1 (α-PD1) therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!