An innovative methodology is proposed, based on applied biotechnology to the recovery of altered stonework: the "", which envisages the use of dehydrated microbial cells without the use of free water or gel-based matrices. This methodology can be particularly useful for the recovery of highly-ornamented stoneworks, which cannot be treated using the conventional cleaning techniques. The experimental plan included initial laboratory tests on Carrara marble samples, inoculated with dehydrated Saccharomyces cerevisiae yeast cells, followed by on-site tests performed on "" (), a travertine monumental complex in Rome (Italy), on altered highly ornamented areas of about 1,000 cm. The mechanism is based on the spontaneous re-hydration process due to the environmental humidity and on the metabolic fermentative activity of the yeast cells. Evaluation by physical-chemical analyses, after 18 hours of the biocleaning, confirmed a better removal of salts and pollutants, compared to both nebulization treatment and control tests (without cells). The new proposed on-site technique, adopting viable yeast cells, represents a promising method that can be further investigated and optimized for recovering specific altered Cultural Heritage stoneworks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8080898 | PMC |
http://dx.doi.org/10.15698/mic2021.05.748 | DOI Listing |
Heliyon
December 2024
Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), 38010, Santa Cruz de Tenerife, Spain.
The naphthoquinone moiety is commonly found in numerous natural cytotoxic compounds with diverse and pleiotropic modes of action (MOAs). The moiety can exist as a standalone pharmacophore or combined with other pharmacophores to enrich their MOAs. Here, we report that the synthetic fusion of naphthoquinones and oxazepines provides potent cytotoxic compounds with diverse MOAs.
View Article and Find Full Text PDFACS Synth Biol
January 2025
Department of Bioproducts and Biosystems, Aalto University, Espoo 02150, Finland.
Often, the value of the whole biomass from fermentation processes is not exploited, as commercial interests are focused on the main product that is typically either accumulated within cells or secreted into the medium. One underutilized fraction of yeast cells is the cell wall that contains valuable polysaccharides, such as chitin, known for its biocompatibility and biodegradability, which are thought of as valuable properties in diverse industries. Therefore, the valorization of waste biomass from fermentation to coproduce chitin could significantly improve the overall profitability and sustainability of biomanufacturing processes.
View Article and Find Full Text PDFAnim Reprod Sci
December 2024
College of Life Science and Resources and Environment, Yichun University, Yichun, Jiangxi 336000, China; Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, Jiangxi 336000, China.
Diquat (DQ) is a pro-oxidant that generates free radicals in cells through redox reactions, leading to the induction of oxidative stress. During the processes of growth and reproduction, poultry are particularly vulnerable to oxidative stress. Selenium yeast (SeY) serves as an organic selenium source characterized by high activity and low toxicity, imparting antioxidant effects.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan; Course of Biological Science, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan. Electronic address:
In budding yeast, endosomal sorting complex required for transport (ESCRT) mediates microautophagy by vacuolar membrane invagination into the vacuolar lumen, followed by Vps4-assisted membrane constriction and abscission. Here, we show that ESCRT elicits vacuolar fission in the absence of Vps4 after nutrient starvation, although vacuolar fusion is facilitated in wild-type cells in these conditions. ESCRT mediated vacuolar membrane invagination in vps4Δ cells, thereby causing vacuolar fission.
View Article and Find Full Text PDFSci Rep
January 2025
School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
Yeast sex-hormone whole-cell biosensors are analytical tools characterized by long-time storage and low production cost. We engineered compact β-estradiol biosensors in S. cerevisiae cells by leveraging short (20-nt long) operators bound by the fusion protein LexA-ER-VP64-where ER is the human estrogen receptor and VP64 a strong viral activation domain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!